MultiScale Modeling of Physical Phenomena: Adaptive Control of Models
暂无分享,去创建一个
J. Tinsley Oden | Paul T. Bauman | Serge Prudhomme | Albert Romkes | J. Oden | P. Bauman | S. Prudhomme | A. Romkes
[1] Foiles,et al. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.
[2] Dierk Raabe,et al. Computational Materials Science: The Simulation of Materials Microstructures and Properties , 1998 .
[3] van der Erik Giessen,et al. Discrete dislocation plasticity: a simple planar model , 1995 .
[4] Harold S. Park,et al. An introduction to computational nanomechanics and materials , 2004 .
[5] Ted Belytschko,et al. Coupling Methods for Continuum Model with Molecular Model , 2003 .
[6] J. Tinsley Oden,et al. ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS , 2003 .
[7] Wolfgang Bangerth,et al. A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques , 2004 .
[8] M. Baskes,et al. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .
[9] Michael Ortiz,et al. Quasicontinuum simulation of fracture at the atomic scale , 1998 .
[10] J. T. Oden,et al. Adaptive modeling of wave propagation in heterogeneous elastic solids , 2004 .
[11] M. Ortiz,et al. An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.
[12] X. Blanc,et al. From Molecular Models¶to Continuum Mechanics , 2002 .
[13] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[14] Michael Ortiz,et al. Hierarchical models of plasticity: dislocation nucleation and interaction , 1999 .
[15] Richard D. James,et al. A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .
[16] L E Shilkrot,et al. Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.
[17] Thomas Y. Hou,et al. A mathematical framework of the bridging scale method , 2006 .
[18] E Weinan,et al. Some Recent Progress in Multiscale Modeling , 2004 .
[19] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[20] M. Ortiz,et al. Quasicontinuum analysis of defects in solids , 1996 .
[21] J. Oden,et al. Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .
[22] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[23] V. Fock,et al. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .
[24] Thomas Y. Hou,et al. A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations , 2006, J. Comput. Phys..
[25] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[26] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[27] Michael Ortiz,et al. Quasicontinuum models of fracture and plasticity , 1998 .
[28] Noam Bernstein,et al. Multiscale simulations of silicon nanoindentation , 2001 .
[29] Harold S. Park,et al. The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .
[30] Kenneth Runesson,et al. Parameter identification in constitutive models via optimization with a posteriori error control , 2005 .
[31] Gregory J. Wagner,et al. Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .
[32] J. Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .
[33] Roland Becker,et al. Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations , 2005 .
[34] Ronald E. Miller,et al. Atomistic/continuum coupling in computational materials science , 2003 .
[35] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[36] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[37] Gregory J. Wagner,et al. A multiscale projection method for the analysis of carbon nanotubes , 2004 .
[38] Ronald E. Miller,et al. The Quasicontinuum Method: Overview, applications and current directions , 2002 .
[39] William A. Curtin,et al. Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .
[40] H. Fischmeister,et al. Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .
[41] Michael Ortiz,et al. Nanoindentation and incipient plasticity , 1999 .
[42] Paul T. Bauman,et al. On the extension of goal-oriented error estimation and hierarchical modeling to discrete lattice models , 2005 .
[43] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .
[44] Florian Theil,et al. Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..
[45] J. Tinsley Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .
[46] Pingwen Zhang,et al. Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..
[47] E. Vanden-Eijnden,et al. The Heterogeneous Multiscale Method: A Review , 2007 .
[48] E. B. Tadmor,et al. Quasicontinuum models of interfacial structure and deformation , 1998 .
[49] J. Tinsley Oden,et al. Multi-scale goal-oriented adaptive modeling of random heterogeneous materials , 2006 .
[50] J. Tinsley Oden,et al. Estimation of modeling error in computational mechanics , 2002 .
[51] J. Tinsley Oden,et al. Error Control for Molecular Statics Problems , 2006 .
[52] Kumar Vemaganti,et al. Hierarchical modeling of heterogeneous solids , 2006 .
[53] J. Q. Broughton,et al. Concurrent coupling of length scales: Methodology and application , 1999 .
[54] Harold S. Park,et al. Three-dimensional bridging scale analysis of dynamic fracture , 2005 .
[55] Z. Hashin. Analysis of Composite Materials—A Survey , 1983 .
[56] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[57] L. Elton. Atomic Physics , 1966, Nature.