MultiScale Modeling of Physical Phenomena: Adaptive Control of Models

It is common knowledge that the accuracy with which computer simulations can depict physical events depends strongly on the choice of the mathematical model of the events. Perhaps less appreciated is the notion that the error due to modeling can be defined, estimated, and used adaptively to control modeling error, provided one accepts the existence of a base model that can serve as a datum with respect to which other models can be compared. In this work, it is shown that the idea of comparing models and controlling model error can be used to develop a general approach for multiscale modeling, a subject of growing importance in computational science. A posteriori estimates of modeling error in so-called quantities of interest are derived and a class of adaptive modeling algorithms is presented. Several applications of the theory and methodology are presented. These include preliminary work on random multiphase composite materials, molecular statics simulations with applications to problems in nanoindentation, and analysis of molecular dynamics models using various techniques for scale bridging.

[1]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[2]  Dierk Raabe,et al.  Computational Materials Science: The Simulation of Materials Microstructures and Properties , 1998 .

[3]  van der Erik Giessen,et al.  Discrete dislocation plasticity: a simple planar model , 1995 .

[4]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[5]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[6]  J. Tinsley Oden,et al.  ERROR ESTIMATION OF EIGENFREQUENCIES FOR ELASTICITY AND SHELL PROBLEMS , 2003 .

[7]  Wolfgang Bangerth,et al.  A framework for the adaptive finite element solution of large inverse problems. I. Basic techniques , 2004 .

[8]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[9]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[10]  J. T. Oden,et al.  Adaptive modeling of wave propagation in heterogeneous elastic solids , 2004 .

[11]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[12]  X. Blanc,et al.  From Molecular Models¶to Continuum Mechanics , 2002 .

[13]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[14]  Michael Ortiz,et al.  Hierarchical models of plasticity: dislocation nucleation and interaction , 1999 .

[15]  Richard D. James,et al.  A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .

[16]  L E Shilkrot,et al.  Coupled atomistic and discrete dislocation plasticity. , 2002, Physical review letters.

[17]  Thomas Y. Hou,et al.  A mathematical framework of the bridging scale method , 2006 .

[18]  E Weinan,et al.  Some Recent Progress in Multiscale Modeling , 2004 .

[19]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[20]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[21]  J. Oden,et al.  Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .

[22]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[23]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[24]  Thomas Y. Hou,et al.  A pseudo-spectral multiscale method: Interfacial conditions and coarse grid equations , 2006, J. Comput. Phys..

[25]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[27]  Michael Ortiz,et al.  Quasicontinuum models of fracture and plasticity , 1998 .

[28]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[29]  Harold S. Park,et al.  The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .

[30]  Kenneth Runesson,et al.  Parameter identification in constitutive models via optimization with a posteriori error control , 2005 .

[31]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[32]  J. Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .

[33]  Roland Becker,et al.  Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations , 2005 .

[34]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[35]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[36]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[37]  Gregory J. Wagner,et al.  A multiscale projection method for the analysis of carbon nanotubes , 2004 .

[38]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[39]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[40]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[41]  Michael Ortiz,et al.  Nanoindentation and incipient plasticity , 1999 .

[42]  Paul T. Bauman,et al.  On the extension of goal-oriented error estimation and hierarchical modeling to discrete lattice models , 2005 .

[43]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[44]  Florian Theil,et al.  Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..

[45]  J. Tinsley Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. Error estimates and adaptive algorithms , 2000 .

[46]  Pingwen Zhang,et al.  Analysis of the heterogeneous multiscale method for parabolic homogenization problems , 2007, Math. Comput..

[47]  E. Vanden-Eijnden,et al.  The Heterogeneous Multiscale Method: A Review , 2007 .

[48]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[49]  J. Tinsley Oden,et al.  Multi-scale goal-oriented adaptive modeling of random heterogeneous materials , 2006 .

[50]  J. Tinsley Oden,et al.  Estimation of modeling error in computational mechanics , 2002 .

[51]  J. Tinsley Oden,et al.  Error Control for Molecular Statics Problems , 2006 .

[52]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[53]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[54]  Harold S. Park,et al.  Three-dimensional bridging scale analysis of dynamic fracture , 2005 .

[55]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[56]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[57]  L. Elton Atomic Physics , 1966, Nature.