Development of a new laboratory technique for high‐temperature thermal emission spectroscopy of silicate melts

With the prevalence of glass and molten silicates in volcanic environments, and the important role of surface emissivity in thermal infrared (TIR) measurements, it is imperative to characterize accurately the spectral features associated with silicate glasses and melts. A microfurnace has been developed specifically for use with a laboratory Fourier transform infrared (FTIR) spectrometer to collect the first in situ TIR emission spectra of actively melting and cooling silicate glasses. The construction, implementation, and calibration of the microfurnace spectrometer system are presented here. Initial testing of the microfurnace is also discussed, which includes acquisition of thermal emission spectra of a quartz powder (unmelted), a melted and cooled oligoclase feldspar, and glassy melt of rhyolitic composition. Unlike a solid material, which may only have bending and stretching vibrations within its molecular structure, a fully molten material will exhibit several more degrees of freedom in structural movement, thus changing its spectral character. Differences in spectral behavior and morphology are observed between a glass in a solid state and its molten counterpart, confirming previous field measurements of lower emissivity upon melting. This laboratory microfurnace system has been designed to quantify the TIR emission spectral behavior of glassy materials in various physical states. Ultimately, it is hoped that the microfurnace data will help improve the ability of field‐based, airborne, and spaceborne TIR data to characterize glassy volcanic terranes.

[1]  M. Ramsey,et al.  Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy , 2010 .

[2]  M. Dyar,et al.  Effect of SiO2, total FeO, Fe3+/Fe2+, and alkali elements in basaltic glasses on mid-infrared , 2009 .

[3]  L. Fortuna,et al.  Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption , 2009 .

[4]  K. Dalby,et al.  Effect of SiO 2 , Total FeO, Fe 2+ /Fe 3+ and Alkalis in Glasses on Thermal Infrared Spectra , 2008 .

[5]  R. Wessels,et al.  Monitoring Changing Eruption Styles of Kilauea Volcano Over the Summer of 2007 With Spaceborne Infrared Data , 2007 .

[6]  C. Weitz,et al.  Morphology, chemistry, and spectral properties of Hawaiian rock coatings and implications for Mars , 2007 .

[7]  Alexander Belousov,et al.  Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data , 2007 .

[8]  M. Ramsey,et al.  Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses , 2007 .

[9]  P. King,et al.  A new approach to determine and quantify structural units in silicate glasses using micro-reflectance Fourier-Transform infrared spectroscopy , 2006 .

[10]  K. Dalby,et al.  Characterization of glasses using infrared spectroscopy , 2006 .

[11]  J. Hazemann,et al.  Kinetics of iron redox reactions in silicate liquids: A high-temperature X-ray absorption and Raman spectroscopy study , 2006 .

[12]  D. Neuville,et al.  Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy , 2006 .

[13]  M. Ramsey,et al.  Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System , 2006 .

[14]  Maurizio Ripepe,et al.  Lava effusion rates from hand-held thermal infrared imagery: an example from the June 2003 effusive activity at Stromboli , 2005 .

[15]  D. Neuville,et al.  Kinetics of iron oxidation in silicate melts: a preliminary XANES study , 2004 .

[16]  D. Neuville,et al.  Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation , 2004 .

[17]  D. Neuville,et al.  Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy. , 2004 .

[18]  Michael S. Ramsey,et al.  Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR , 2004 .

[19]  David A. Crown,et al.  Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai'i, using integrated field and remote sensing analyses , 2004 .

[20]  D. Sabol,et al.  Emissivity Changes in Basalt Cooling After Eruption From PU'U O'O, Kilauea, Hawaii , 2002 .

[21]  M. Wyatt Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy , 2001 .

[22]  P. Odier,et al.  Bulk and local dynamics in glass-forming liquids: A viscosity, electrical conductivity, and NMR study of aluminosilicate melts , 2001 .

[23]  A. Harris,et al.  FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel , 2001 .

[24]  A. Marcelli,et al.  Compression mechanisms in aluminosilicate melts: Raman and XANES spectroscopy of glasses quenched from pressures up to 10 GPa , 2001 .

[25]  D. Crown,et al.  Thermal Remote Sensing Characteristics of Basaltic Lava Flow Surface Units: Implications for Flow Field Evolution , 2000 .

[26]  M. Ramsey,et al.  Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .

[27]  S. Anderson,et al.  Pulsed inflation of pahoehoe lava flows: implications for flood basalt emplacement , 1999 .

[28]  L. Keszthelyi,et al.  Calculation of lava effusion rates from Landsat TM data , 1998 .

[29]  P. McMillan,et al.  Structural characterization of SiO2-CsAlO2 and SiO2-RbAlO2 glasses , 1998 .

[30]  P. McMillan,et al.  Temperature dependence of the OH⁻ absorption in SiO2 glass and melt to 1975 K , 1998 .

[31]  A. Flank,et al.  Aluminium X-ray absorption Near Edge Structure in model compounds and Earth’s surface minerals , 1998 .

[32]  J. Stebbins,et al.  NMR evidence for excess non-bridging oxygen in an aluminosilicate glass , 1997, Nature.

[33]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[34]  Roger P. Denlinger,et al.  The initial cooling of pahoehoe flow lobes , 1996 .

[35]  F. Farges,et al.  An empirical model for the anharmonic analysis of high-temperature XAFS spectra of oxide compounds with applications to the coordination environment of Ni in NiO, γ-Ni2SiO4 and Ni-bearing Na-disilicate glass and melt , 1996 .

[36]  D. Neuville,et al.  Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO2-NaAlO2 , 1996 .

[37]  P. McMillan,et al.  Chapter 8. VIBRATIONAL SPECTROSCOPY OF SILICATE LIQUIDS , 1995 .

[38]  P. McMillan,et al.  An in-situ high-temperature structural study of stable and metastable CaAl2Si2O8 polymorphs , 1995, Mineralogical Magazine.

[39]  H. P. Gunnlaugsson,et al.  High temperature Mössbauer spectroscopy of titanomagnetite and maghemite in basalts , 1994 .

[40]  B. Reynard,et al.  A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy , 1994 .

[41]  P. McMillan,et al.  Structure and Dynamics in Calcium Aluminate Liquids: High‐Temperature 27Al NMR and Raman Spectroscopy , 1994 .

[42]  Joy A. Crisp,et al.  Influence of crystallization and entrainment of cooler material on the emplacement of basaltic aa lava flows , 1994 .

[43]  I. Daniel,et al.  Raman spectroscopy, x‐ray diffraction, and phase relationship determinations with a versatile heating cell for measurements up to 3600 K (or 2700 K in air) , 1993 .

[44]  P. Christensen,et al.  Mapping the distribution of vesicular textures on silicic lavas using the Thermal Infrared Multispectral Scanner , 1993 .

[45]  B. Mysen,et al.  Structure and properties of alkali silicate melts at magmatic temperatures , 1993 .

[46]  P. McMillan,et al.  Magnesium and Calcium Aluminate Liquids: In Situ High-Temperature 27Al NMR Spectroscopy , 1993, Science.

[47]  I. Farnan,et al.  Dynamics of the α-β phase transitions in quartz and cristobalite as observed by in-situ high temperature 29Si and 17O NMR , 1992 .

[48]  Dominique Massiot,et al.  SiO2-Al2O3 liquids: In-situ study by high-temperature 27Al NMR spectroscopy and molecular dynamics simulation , 1992 .

[49]  I. Farnan,et al.  The structure and dynamics of alkali silicate liquids: A view from NMR spectroscopy , 1992 .

[50]  P. McMillan,et al.  Vibrational spectroscopy of silicate liquids and glasses , 1992 .

[51]  P. McMillan,et al.  Al and Si coordination in SiO21bAl2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations , 1992 .

[52]  B. Mysen,et al.  Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475°C , 1992 .

[53]  I. Farnan,et al.  Effects of High Temperature on Silicate Liquid Structure: A Multinuclear NMR Study , 1992, Science.

[54]  Anne B. Kahle,et al.  Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .

[55]  David C. Pieri,et al.  Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna , 1990 .

[56]  Joy A. Crisp,et al.  A model for lava flows with two thermal components , 1990 .

[57]  B. Mysen Role of Al in depolymerized, peralkaline aluminosilicate melts in the systems Li 2 O-Al 2 O 3 -SiO 2 , Na 2 O-Al 2 O 3 -SiO 2 , and K 2 O-Al 2 O 3 -SiO 2 , 1990 .

[58]  R. Kirkpatrick Chapter 9. MAS NMR SPECTROSCOPY OF MINERALS AND GLASSES , 1988 .

[59]  J. Stebbins Effects of temperature and composition on silicate glass structure and dynamics: SI-29 NMR results , 1988 .

[60]  B. Mysen Structure and Properties of Silicate Melts , 1988 .

[61]  S. Baloga,et al.  Eruption rate, area, and length relationships for some Hawaiian lava flows , 1986 .

[62]  N. Opdyke,et al.  Paleomagnetic results from the TRiassic of the Yangtze Platform , 1986 .

[63]  S. Baloga,et al.  Time‐dependent profiles of lava flows , 1986 .

[64]  B. Piriou,et al.  Study of sodium silicate melt and glass by infrared reflectance spectroscopy , 1983 .

[65]  B. Mysen,et al.  The Structure of Silicate Melts: Implications for Chemical and Physical Properties of Natural Magma (Paper 2R0405) , 1982 .

[66]  D. Virgo,et al.  Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4 , 1982 .

[67]  B. Mysen,et al.  Structural similarity of glasses and melts relevant to petrological processes , 1981 .

[68]  D. Virgo,et al.  The structural role of aluminum in silicate melts—a Raman spectroscopic study at 1 atmosphere , 1981 .

[69]  D. Virgo,et al.  Relations between the anionic structure and viscosity of silicate melts; a Raman spectroscopic study , 1980 .

[70]  M. Malin Lengths of Hawaiian lava flows , 1980 .

[71]  F. Gervais,et al.  Temperature dependence of transverse and longitudinal optic modes in the α and β phases of quartz , 1975 .

[72]  S. G. Tilford,et al.  High temperature furnace system for vacuum ultraviolet spectroscopic studies. , 1973, Applied optics.

[73]  G. Ramelow,et al.  Atomic absorption spectroscopy with a high-temperature furnace , 1968 .

[74]  R. J. Bell,et al.  The vibrational spectra of vitreous silica, germania and beryllium fluoride , 1968 .

[75]  D. Neuville,et al.  Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature , 2008 .

[76]  Peul McMTLLAN Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy , 2007 .

[77]  Paul F. McMillan,et al.  Laboratory Fourier transform infrared spectroscopy methods for geologic samples. , 2004 .

[78]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[79]  M. Tomozawa,et al.  Correlation of silica glass properties with the infrared spectra , 1997 .

[80]  P. McMillan,et al.  Vibrational spectroscopy of silicate liquids , 1995 .

[81]  Paul F. McMillan,et al.  Structure, Dynamics and Properties of Silicate Melts , 1995 .

[82]  P. Heaney,et al.  Structure and chemistry of the low-pressure silica polymorphs , 1994 .

[83]  John W. Salisbury,et al.  Infrared (2.1-25 μm) spectra of minerals , 1991 .

[84]  I. Farnan,et al.  High-temperature silicon-29 NMR investigation of solid and molten silicates , 1990 .

[85]  E. Dowty Vibrational interactions of tetrahedra in silicate glasses and crystals , 1987 .

[86]  O. MysnN,et al.  The structural role of aluminum in silicate melts-a Raman spectroscopic study at I atmosphere , 2022 .