Mysterious microsporidians: springtime outbreaks of disease in Daphnia communities in shallow pond ecosystems.

[1]  Alexander T. Strauss,et al.  Parasite‐driven cascades or hydra effects: Susceptibility and foraging depression shape parasite–host–resource interactions , 2022, Functional Ecology.

[2]  Julia D. Monk,et al.  Cascading effects of a disease outbreak in a remote protected area. , 2022, Ecology letters.

[3]  E. Borer,et al.  Disease‐mediated nutrient dynamics: Coupling host‐pathogen interactions with ecosystem elements and energy , 2022, Ecological Monographs.

[4]  R. Poulin,et al.  Revisiting the phylogeny of microsporidia. , 2021, International journal for parasitology.

[5]  C. Williamson,et al.  Shedding light on environmentally transmitted parasites: lighter conditions within lakes restrict epidemic size. , 2020, Ecology.

[6]  Ilya R. Fischhoff,et al.  Parasite and pathogen effects on ecosystem processes: A quantitative review , 2020, Ecosphere.

[7]  A. Petrusek,et al.  Establishment of a new microsporidian genus and species, Pseudoberwaldia daphniae (Microsporidia, Opisthosporidia), a common parasite of the Daphnia longispina complex in Europe. , 2019, Journal of invertebrate pathology.

[8]  A. Petrusek,et al.  Molecular and structural assessment of microsporidia infecting daphnids: The "obtusa-like" microsporidia, a branch of the monophyletic Agglomeratidae clade, with the establishment of a new genus Conglomerata. , 2018, Journal of invertebrate pathology.

[9]  J. Buck,et al.  Ecological and Evolutionary Consequences of Parasite Avoidance. , 2018, Trends in ecology & evolution.

[10]  M. Shocket,et al.  Temperature Drives Epidemics in a Zooplankton-Fungus Disease System: A Trait-Driven Approach Points to Transmission via Host Foraging , 2018, The American Naturalist.

[11]  C. Vossbrinck,et al.  Microsporidian genus Berwaldia (Opisthosporidia, Microsporidia), infecting daphnids (Crustacea, Branchiopoda): Biology, structure, molecular phylogeny and description of two new species. , 2017, European journal of protistology.

[12]  W. Ripple,et al.  Infectious Agents Trigger Trophic Cascades. , 2017, Trends in ecology & evolution.

[13]  N. Hairston,et al.  Cyanobacteria facilitate parasite epidemics in Daphnia. , 2016, Ecology.

[14]  M. Shocket,et al.  Habitat, predators, and hosts regulate disease in Daphnia through direct and indirect pathways , 2016 .

[15]  C. Kruk,et al.  A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters , 2016, Hydrobiologia.

[16]  T. Ketola,et al.  No uniform associations between parasite prevalence and environmental nutrients , 2014 .

[17]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[18]  U. Sommer,et al.  Modifying the PEG model for Mediterranean lakes - no biological winter and strong fish predation , 2014 .

[19]  Menna E. Jones,et al.  Trophic Cascades Following the Disease‐Induced Decline of an Apex Predator, the Tasmanian Devil , 2014, Conservation biology : the journal of the Society for Conservation Biology.

[20]  Miquel Lürling,et al.  Beyond the Plankton Ecology Group (PEG) Model : Mechanisms Driving Plankton Succession , 2012 .

[21]  T. Sime-Ngando Phytoplankton Chytridiomycosis: Fungal Parasites of Phytoplankton and Their Imprints on the Food Web Dynamics , 2012, Front. Microbio..

[22]  J. Wolinska,et al.  Spatial variation of Daphnia parasite load within individual water bodies , 2011 .

[23]  M. Duffy,et al.  Epidemic size determines population-level effects of fungal parasites on Daphnia hosts , 2011, Oecologia.

[24]  Alain Patoine,et al.  Climate control of the spring clear‐water phase through the transfer of energy and mass to lakes , 2009 .

[25]  A. Dobson,et al.  A Disease-Mediated Trophic Cascade in the Serengeti and its Implications for Ecosystem C , 2009, PLoS biology.

[26]  S. Carpenter,et al.  Long-term disease dynamics in lakes: causes and consequences of chytrid infections in Daphnia populations. , 2008, Ecology.

[27]  Stefano Allesina,et al.  Parasites in food webs: the ultimate missing links , 2008, Ecology letters.

[28]  J. Wolinska,et al.  Epidemiology of a Daphnia brood parasite and its implications on host life-history traits , 2007, Oecologia.

[29]  B. Ibelings,et al.  The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella , 2007, Proceedings of the Royal Society B: Biological Sciences.

[30]  T. Little,et al.  Parasite‐mediated selection and the role of sex and diapause in Daphnia , 2006, Journal of evolutionary biology.

[31]  D. Ebert,et al.  Apparent seasonality of parasite dynamics: analysis of cyclic prevalence patterns , 2006, Proceedings of the Royal Society B: Biological Sciences.

[32]  C. Brussaard,et al.  Viral Control of Phytoplankton Populations—a Review1 , 2004, The Journal of eukaryotic microbiology.

[33]  C. Vossbrinck,et al.  Molecular Phylogeny and Evolution of Mosquito Parasitic Microsporidia (Microsporidia: Amblyosporidae)1 , 2004, The Journal of eukaryotic microbiology.

[34]  H. Cyr,et al.  Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities , 1999, Oecologia.

[35]  Ulrich Sommer,et al.  The PEG-model of seasonal succession of planktonic events in fresh waters , 1986, Archiv für Hydrobiologie.

[36]  B. Silliman,et al.  Parasites enhance resistance to drought in a coastal ecosystem. , 2019, Ecology.

[37]  K. Lafferty,et al.  Nematomorph parasites drive energy flow through a riparian ecosystem. , 2011, Ecology.

[38]  J. Becnel Horizontal transmission and subsequent development of Amblyospora californica (Microsporidia: Amblyosporidae) in the intermediate and definitive hosts , 1992 .