Dually affine Information Geometry modeled on a Banach space

In this chapter, we study Information Geometry from a particular non-parametric or functional point of view. The basic model is a probabilities subset usually specified by regularity conditions. For example, probability measures mutually absolutely continuous or probability densities with a given degree of smoothness. We construct a manifold structure by giving an atlas of charts as mappings from probabilities to a Banach space. The charts we use are quite peculiar in that we consider only instances where the transition mappings are affine. We chose a particular expression of the tangent and cotangent bundles in this affine setting.

[1]  Paola Siri,et al.  Robust concentration inequalities in maximal exponential models , 2021 .

[2]  S. Amari Information geometry , 2021, Japanese Journal of Mathematics.

[3]  G. A. Young,et al.  High‐dimensional Statistics: A Non‐asymptotic Viewpoint, Martin J.Wainwright, Cambridge University Press, 2019, xvii 552 pages, £57.99, hardback ISBN: 978‐1‐1084‐9802‐9 , 2020, International Statistical Review.

[4]  Giovanni Pistone,et al.  Information Geometry of the Probability Simplex: A Short Course , 2019, Nonlinear Phenomena in Complex Systems.

[5]  Paola Siri,et al.  Exponential models by Orlicz spaces and applications , 2018, J. Appl. Probab..

[6]  Giovanni Pistone,et al.  Lagrangian Function on the Finite State Space Statistical Bundle , 2018, Entropy.

[7]  Giovanni Pistone Information Geometry of the Gaussian Space , 2016, 1803.08135.

[8]  Paola Siri,et al.  New results on mixture and exponential models by Orlicz spaces , 2016, 1603.05465.

[9]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[10]  Hirohiko Shima,et al.  Geometry of Hessian Structures , 2013, GSI.

[11]  Giovanni Pistone,et al.  Examples of the Application of Nonparametric Information Geometry to Statistical Physics , 2013, Entropy.

[12]  Giovanni Pistone,et al.  Nonparametric Information Geometry , 2013, GSI.

[13]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[14]  Giovanni Pistone,et al.  Exponential statistical manifold , 2007 .

[15]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[16]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[17]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[18]  Giovanni Pistone,et al.  The Exponential Statistical Manifold: Mean Parameters, Orthogonality and Space Transformations , 1999 .

[19]  Giovanni Pistone,et al.  Connections on non-parametric statistical manifolds by Orlicz space geometry , 1998 .

[20]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[21]  S. Lang Differential and Riemannian Manifolds , 1996 .

[22]  Giovanni Pistone,et al.  An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .

[23]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .

[24]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[25]  B. Efron THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .

[26]  A. Dawid Further Comments on Some Comments on a Paper by Bradley Efron , 1977 .

[27]  Ihrer Grenzgebiete,et al.  Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.

[28]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[29]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[30]  R. Mortini,et al.  Lipschitz algebras , 2021, Extension Problems and Stable Ranks.

[31]  G. Burton Sobolev Spaces , 2013 .

[32]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[33]  A. Ceña,et al.  Geometric structures on the non-parametric statistical manifold , 2003 .

[34]  V. Buldygin,et al.  Metric characterization of random variables and random processes , 2000 .

[35]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[36]  野水 克己,et al.  Affine differential geometry : geometry of affine immersions , 1994 .

[37]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[38]  Rory A. Fisher,et al.  The Arrangement of Field Experiments , 1992 .

[39]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[40]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[41]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[42]  anonymous,et al.  Further Comments on , 1970 .

[43]  Charles Hermite,et al.  Cours d'analyse , 1873 .