Dually affine Information Geometry modeled on a Banach space
暂无分享,去创建一个
[1] Paola Siri,et al. Robust concentration inequalities in maximal exponential models , 2021 .
[2] S. Amari. Information geometry , 2021, Japanese Journal of Mathematics.
[3] G. A. Young,et al. High‐dimensional Statistics: A Non‐asymptotic Viewpoint, Martin J.Wainwright, Cambridge University Press, 2019, xvii 552 pages, £57.99, hardback ISBN: 978‐1‐1084‐9802‐9 , 2020, International Statistical Review.
[4] Giovanni Pistone,et al. Information Geometry of the Probability Simplex: A Short Course , 2019, Nonlinear Phenomena in Complex Systems.
[5] Paola Siri,et al. Exponential models by Orlicz spaces and applications , 2018, J. Appl. Probab..
[6] Giovanni Pistone,et al. Lagrangian Function on the Finite State Space Statistical Bundle , 2018, Entropy.
[7] Giovanni Pistone. Information Geometry of the Gaussian Space , 2016, 1803.08135.
[8] Paola Siri,et al. New results on mixture and exponential models by Orlicz spaces , 2016, 1603.05465.
[9] E. M. Lifshitz,et al. Course in Theoretical Physics , 2013 .
[10] Hirohiko Shima,et al. Geometry of Hessian Structures , 2013, GSI.
[11] Giovanni Pistone,et al. Examples of the Application of Nonparametric Information Geometry to Statistical Physics , 2013, Entropy.
[12] Giovanni Pistone,et al. Nonparametric Information Geometry , 2013, GSI.
[13] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[14] Giovanni Pistone,et al. Exponential statistical manifold , 2007 .
[15] Aapo Hyvärinen,et al. Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..
[16] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[17] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[18] Giovanni Pistone,et al. The Exponential Statistical Manifold: Mean Parameters, Orthogonality and Space Transformations , 1999 .
[19] Giovanni Pistone,et al. Connections on non-parametric statistical manifolds by Orlicz space geometry , 1998 .
[20] Shun-ichi Amari,et al. Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.
[21] S. Lang. Differential and Riemannian Manifolds , 1996 .
[22] Giovanni Pistone,et al. An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .
[23] L. Brown. Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .
[24] Julian Musielak,et al. Orlicz Spaces and Modular Spaces , 1983 .
[25] B. Efron. THE GEOMETRY OF EXPONENTIAL FAMILIES , 1978 .
[26] A. Dawid. Further Comments on Some Comments on a Paper by Bradley Efron , 1977 .
[27] Ihrer Grenzgebiete,et al. Ergebnisse der Mathematik und ihrer Grenzgebiete , 1975, Sums of Independent Random Variables.
[28] B. Efron. Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .
[29] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.
[30] R. Mortini,et al. Lipschitz algebras , 2021, Extension Problems and Stable Ranks.
[31] G. Burton. Sobolev Spaces , 2013 .
[32] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[33] A. Ceña,et al. Geometric structures on the non-parametric statistical manifold , 2003 .
[34] V. Buldygin,et al. Metric characterization of random variables and random processes , 2000 .
[35] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[36] 野水 克己,et al. Affine differential geometry : geometry of affine immersions , 1994 .
[37] C. R. Rao,et al. Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .
[38] Rory A. Fisher,et al. The Arrangement of Field Experiments , 1992 .
[39] Shun-ichi Amari,et al. Differential-geometrical methods in statistics , 1985 .
[40] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[41] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[42] anonymous,et al. Further Comments on , 1970 .
[43] Charles Hermite,et al. Cours d'analyse , 1873 .