A Tikhonov regularized penalty function approach for solving polylinear programming problems

Abstract This paper suggests a new regularized penalty method for poly-linear functions. Until our knowledge it is the first time that a regularization approach solution for poly-linear programming is reported in the literature. We propose a penalty function depending on two parameters μ and δ for ensuring the strong convexity and the existence of a unique solution involving equality and inequality constraints. We prove that if the penalty parameter μ tends to zero then the solution of the original problem converges to a unique solution with the minimal weighted norm. We introduce a recurrent procedure based on the projection-gradient method for finding the extremal points and we also prove the convergence of the method. We develop an example for game theory and additional example for portfolio optimization employing the proposed regularization method for Markov chains involving the definition of a poly-linear function.

[1]  Fermín S. Viloche Bazán,et al.  Simple and Efficient Determination of the Tikhonov Regularization Parameter Chosen by the Generalized Discrepancy Principle for Discrete Ill-Posed Problems , 2015, J. Sci. Comput..

[2]  L. Reichel,et al.  Large-scale Tikhonov regularization via reduction by orthogonal projection , 2012 .

[3]  Alexander S. Poznyak,et al.  Simple computing of the customer lifetime value: A fixed local-optimal policy approach , 2014, Journal of Systems Science and Systems Engineering.

[4]  Xiaoping Fan,et al.  A new gradient regularization algorithm for source term inversion in 1D solute transportation with final observations , 2008, Appl. Math. Comput..

[5]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[6]  Maziar Salahi Regularization tools and robust optimization for ill-conditioned least squares problem: A computational comparison , 2011, Appl. Math. Comput..

[7]  Alexander S. Poznyak,et al.  Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games , 2015, Int. J. Appl. Math. Comput. Sci..

[8]  Xue-ping Luo,et al.  Tikhonov regularization methods for inverse variational inequalities , 2014, Optim. Lett..

[9]  Alexander S. Poznyak,et al.  Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method , 2016, Math. Comput. Simul..

[10]  Lixin Shen,et al.  Multi-Parameter Regularization Methods for High-Resolution Image Reconstruction With Displacement Errors , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Hassane Sadok,et al.  Implementations of range restricted iterative methods for linear discrete ill-posed problems , 2012 .

[12]  Lothar Reichel,et al.  Tikhonov regularization based on generalized Krylov subspace methods , 2012 .

[13]  Per Christian Hansen,et al.  Smoothing-Norm Preconditioning for Regularizing Minimum-Residual Methods , 2006, SIAM J. Matrix Anal. Appl..

[14]  Zhe Chen,et al.  Convergence analysis of Tikhonov-type regularization algorithms for multiobjective optimization problems , 2009, Appl. Math. Comput..

[15]  James G. Nagy,et al.  Generalized Arnoldi-Tikhonov Method for Sparse Reconstruction , 2014, SIAM J. Sci. Comput..

[16]  Alexander S. Poznyak,et al.  An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games , 2016, Kybernetika.

[17]  Alexander S. Poznyak,et al.  Solving the mean-variance customer portfolio in Markov chains using iterated quadratic/Lagrange programming: A credit-card customer limits approach , 2015, Expert Syst. Appl..

[18]  Otto P. Hasekamp,et al.  Insights into Tikhonov regularization: application to trace gas column retrieval and the efficient calculation of total column averaging kernels , 2014 .

[19]  Peiliang Xu,et al.  Multiple Parameter Regularization: Numerical Solutions and Applications to the Determination of Geopotential from Precise Satellite Orbits , 2006 .

[20]  Alexander S. Poznyak,et al.  Computing the strong Lp− Nash equilibrium for Markov chains games: Convergence and uniqueness , 2017 .

[21]  Sergei V. Pereverzyev,et al.  Discretized Tikhonov regularization for Robin boundaries localization , 2014, Appl. Math. Comput..

[22]  Jun-Feng Yin,et al.  Preconditioner based on the Sherman-Morrison formula for regularized least squares problems , 2009, Appl. Math. Comput..

[23]  M. P. Rajan,et al.  A variant of Tikhonov regularization for parabolic PDE with space derivative multiplied by a small parameter ∊ , 2015, Appl. Math. Comput..

[24]  Alexander S. Poznyak,et al.  A priori-knowledge/actor-critic reinforcement learning architecture for computing the mean-variance customer portfolio: The case of bank marketing campaigns , 2015, Eng. Appl. Artif. Intell..

[25]  Maria Rosaria Russo,et al.  A GCV based Arnoldi-Tikhonov regularization method , 2013, BIT Numerical Mathematics.

[26]  Marco Donatelli,et al.  Square smoothing regularization matrices with accurate boundary conditions , 2014, J. Comput. Appl. Math..

[27]  Lothar Reichel,et al.  Application of denoising methods to regularizationof ill-posed problems , 2014, Numerical Algorithms.

[28]  S. Paterlini,et al.  Constructing Optimal Sparse Portfolios Using Regularization Methods , 2014 .

[29]  Lauri Kettunen,et al.  Use of Tikhonov Regularization to Improve the Accuracy of Position Estimates in Inertial Navigation , 2011 .

[30]  Li Wang,et al.  A modified Tikhonov regularization method , 2015, J. Comput. Appl. Math..

[31]  J. Nagy,et al.  A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .

[32]  Lothar Reichel,et al.  On the reduction of Tikhonov minimization problems and the construction of regularization matrices , 2012, Numerical Algorithms.

[33]  Marine Carrasco,et al.  Optimal Portfolio Selection using Regularization , 2010 .