Almost every real quadratic map is either regular or stochastic

In this paper we complete a program to study measurable dynamics in the real quadratic family. Our goal was to prove that almost any real quadratic map Pc : z t- x2 + c, c c [-2,1/4], has either an attracting cycle or an absolutely continuous invariant measure. The final step, completed here, is to prove that the set of infinitely renormalizable parametric values c c [-2,1/4] has zero Lebesgue measure. We derive this from a Renormalization Theorem which asserts uniform hyperbolicity of the full renormalization operator. This theorem gives the most general real version of the Feigenbaum-Coullet-Tresser universality, simultanuously for all combinatorial types.

[1]  L. Young Ergodic Theory of Attractors , 1995 .

[2]  Parabolic limits of renormalization , 1997, Ergodic Theory and Dynamical Systems.

[3]  Mikhail Lyubich,et al.  Dynamics of quadratic polynomials, III: Parapuzzle and SBR measures , 1996, math/9606219.

[4]  F. Ledrappier Some properties of absolutely continuous invariant measures on an interval , 1981, Ergodic Theory and Dynamical Systems.

[5]  G. Levin,et al.  Local connectivity of the Julia set of real polynomials , 1995, math/9504227.

[6]  Lennart Carleson,et al.  On Iterations of 1 - ax 2 on (- 1,1) , 1985 .

[7]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[8]  Stewart D. Johnson Singular measures without restrictive intervals , 1987 .

[9]  L. Bers,et al.  Holomorphic families of injections , 1986 .

[10]  C. McMullen Renormalization and 3-Manifolds Which Fiber over the Circle , 1996 .

[11]  Combinatorics, geometry and attractors of quasi-quadratic maps , 1992, math/9212210.

[12]  P. Fatou,et al.  Sur les équations fonctionnelles , 1920 .

[13]  Michael Yampolsky The Attractor of Renormalization¶and Rigidity of Towers of Critical Circle Maps , 1998 .

[14]  M. Viana Homoclinic Bifurcations and Persistence of Nonuniformly Hyperbolic Attractors , 1995 .

[15]  M. Lyubich,et al.  Measure of solenoidal attractors of unimodal maps of the segment , 1990 .

[16]  H. Epstein Fixed points of composition operators. II , 1989 .

[17]  Y. Sinai,et al.  Feigenbaum universality and the thermodynamic formalism , 1984 .

[18]  Invariant measures of interval maps , 1994 .

[19]  Pierre Coullet,et al.  ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .

[20]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[21]  John Guckenheimer,et al.  Limit sets ofS-unimodal maps with zero entropy , 1987 .

[22]  M. Lyubich Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture. , 1999, math/9903201.

[23]  J. Guckenheimer Sensitive dependence to initial conditions for one dimensional maps , 1979 .

[24]  A. Douady,et al.  Étude dynamique des polynômes complexes , 1984 .

[25]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[26]  Rigidity of C2 Infinitely Renormalizable Unimodal Maps , 1999, math/9905171.

[27]  D. Sullivan,et al.  On the dynamics of rational maps , 1983 .

[28]  M. Lyubich Dynamics of quadratic polynomials, I–II , 1997 .

[29]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[30]  Curtis T. McMullen,et al.  Complex Dynamics and Renormalization , 1994 .

[31]  J. Hubbard Local connectivity of Julia sets and bifurcation loci: three theorems of J , 1993 .

[32]  J. Eckmann,et al.  Bounds on the unstable eigenvalue for period doubling , 1990 .

[33]  Franz Hofbauer,et al.  Quadratic maps without asymptotic measure , 1990 .

[34]  Z. Slodkowski Holomorphic motions and polynomial hulls , 1991 .

[35]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[36]  A. Douady,et al.  Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné , 1966 .

[37]  M. Lyubich,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Some typical properties of the dynamics of rational maps , 1983 .

[38]  P. Cvitanović Universality in Chaos , 1989 .

[39]  M. Jakobson Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .

[40]  G. Julia Mémoire sur l'itération des fonctions rationnelles , 1918 .

[41]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[42]  Induced expansion for quadratic polynomials , 1993, math/9308223.

[43]  The Fibonacci unimodal map , 1991, math/9201291.

[44]  Alexander Blokh,et al.  Measurable dynamics of $S$-unimodal maps of the interval , 1991 .

[45]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[46]  M. Lyubich,et al.  Dynamics of quadratic polynomials : Complex bounds for real maps , 1995, math/9504206.