Almost every real quadratic map is either regular or stochastic
暂无分享,去创建一个
[1] L. Young. Ergodic Theory of Attractors , 1995 .
[2] Parabolic limits of renormalization , 1997, Ergodic Theory and Dynamical Systems.
[3] Mikhail Lyubich,et al. Dynamics of quadratic polynomials, III: Parapuzzle and SBR measures , 1996, math/9606219.
[4] F. Ledrappier. Some properties of absolutely continuous invariant measures on an interval , 1981, Ergodic Theory and Dynamical Systems.
[5] G. Levin,et al. Local connectivity of the Julia set of real polynomials , 1995, math/9504227.
[6] Lennart Carleson,et al. On Iterations of 1 - ax 2 on (- 1,1) , 1985 .
[7] Lennart Carleson,et al. The Dynamics of the Henon Map , 1991 .
[8] Stewart D. Johnson. Singular measures without restrictive intervals , 1987 .
[9] L. Bers,et al. Holomorphic families of injections , 1986 .
[10] C. McMullen. Renormalization and 3-Manifolds Which Fiber over the Circle , 1996 .
[11] Combinatorics, geometry and attractors of quasi-quadratic maps , 1992, math/9212210.
[12] P. Fatou,et al. Sur les équations fonctionnelles , 1920 .
[13] Michael Yampolsky. The Attractor of Renormalization¶and Rigidity of Towers of Critical Circle Maps , 1998 .
[14] M. Viana. Homoclinic Bifurcations and Persistence of Nonuniformly Hyperbolic Attractors , 1995 .
[15] M. Lyubich,et al. Measure of solenoidal attractors of unimodal maps of the segment , 1990 .
[16] H. Epstein. Fixed points of composition operators. II , 1989 .
[17] Y. Sinai,et al. Feigenbaum universality and the thermodynamic formalism , 1984 .
[18] Invariant measures of interval maps , 1994 .
[19] Pierre Coullet,et al. ITÉRATIONS D'ENDOMORPHISMES ET GROUPE DE RENORMALISATION , 1978 .
[20] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[21] John Guckenheimer,et al. Limit sets ofS-unimodal maps with zero entropy , 1987 .
[22] M. Lyubich. Feigenbaum-Coullet-Tresser universality and Milnor's hairiness conjecture. , 1999, math/9903201.
[23] J. Guckenheimer. Sensitive dependence to initial conditions for one dimensional maps , 1979 .
[24] A. Douady,et al. Étude dynamique des polynômes complexes , 1984 .
[25] Y. Wong,et al. Differentiable Manifolds , 2009 .
[26] Rigidity of C2 Infinitely Renormalizable Unimodal Maps , 1999, math/9905171.
[27] D. Sullivan,et al. On the dynamics of rational maps , 1983 .
[28] M. Lyubich. Dynamics of quadratic polynomials, I–II , 1997 .
[29] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[30] Curtis T. McMullen,et al. Complex Dynamics and Renormalization , 1994 .
[31] J. Hubbard. Local connectivity of Julia sets and bifurcation loci: three theorems of J , 1993 .
[32] J. Eckmann,et al. Bounds on the unstable eigenvalue for period doubling , 1990 .
[33] Franz Hofbauer,et al. Quadratic maps without asymptotic measure , 1990 .
[34] Z. Slodkowski. Holomorphic motions and polynomial hulls , 1991 .
[35] J. Guckenheimer. ONE‐DIMENSIONAL DYNAMICS * , 1980 .
[36] A. Douady,et al. Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné , 1966 .
[37] M. Lyubich,et al. COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Some typical properties of the dynamics of rational maps , 1983 .
[38] P. Cvitanović. Universality in Chaos , 1989 .
[39] M. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps , 1981 .
[40] G. Julia. Mémoire sur l'itération des fonctions rationnelles , 1918 .
[41] W. D. Melo,et al. ONE-DIMENSIONAL DYNAMICS , 2013 .
[42] Induced expansion for quadratic polynomials , 1993, math/9308223.
[43] The Fibonacci unimodal map , 1991, math/9201291.
[44] Alexander Blokh,et al. Measurable dynamics of $S$-unimodal maps of the interval , 1991 .
[45] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[46] M. Lyubich,et al. Dynamics of quadratic polynomials : Complex bounds for real maps , 1995, math/9504206.