Fast wavelet BEM for 3d electromagnetic shaping

In the present paper we combine an energy variational approach with shape optimization techniques to compute numerically free surfaces in electromagnetic shaping and levitation of liquid metals in three dimensions. Assuming the domains to be starshaped, the surfaces are represented via an ansatz by spherical harmonics, which generalizes the approximation by Fourier series in two dimensions. We will show that all ingredients of the shape optimization algorithm, particularly the shape gradient and the cost functional, can be computed by boundary integrals. A wavelet based fast boundary element method of optimal complexity is employed for the computation of the exterior magnetic field and its Neumann-to-Dirichlet map.

[1]  Jean R. Roche,et al.  Numerical simulation of tridimensional electromagnetic shaping of liquid metals , 1993 .

[2]  M. Crouzeix,et al.  Theoretical and numerical study of a free boundary problem by boundary integral methods , 2001 .

[3]  Philip E. Gill,et al.  Practical optimization , 1981 .

[4]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[5]  Reinhold Schneider,et al.  Biorthogonal wavelet bases for the boundary element method , 2004 .

[6]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[7]  Arian Novruzi,et al.  Contribution en optimisation de formes et applications , 1997 .

[8]  Olivier Coulaud,et al.  Numerical approximation of a free boundary problem arising in electromagnetic shaping , 1994 .

[9]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[10]  Jean R. Roche,et al.  Second order derivatives, Newton method,application to shape optimization , 1995 .

[11]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[12]  Helmut Harbrecht,et al.  Numerical Solution of Elliptic Shape Optimization Problems using wavelet-based BEM , 2003, Optim. Methods Softw..

[13]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[14]  A. Henrot,et al.  About existence of equilibria in electromagnetic casting , 1991 .

[15]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[16]  Helmut Harbrecht,et al.  Exterior electromagnetic shaping using wavelet BEM , 2005 .

[17]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[18]  Johannes Terno,et al.  Numerik der Optimierung , 1993 .

[19]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[20]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .