On the Parameter Estimation of 2-D Moving Average Random Fields

The problem of estimating the parameters of 2-D homogeneous moving average (MA) random fields only from output measurements is addressed. A novel computationally efficient algorithm for the estimation of the parameters of a minimum-phase 2-D MA model with a nonsymmetric half-plane (NSHP) region of support (ROS) is proposed. Using the 2-D spectral factorization, relationship between the NSHP MA model parameters and the cepstral coefficients of a 2-D MA random field is considered. Based on this relation, recursive equations are derived so as to estimate the NSHP MA model parameters. It is noteworthy that the proposed algorithm is practical, i.e., it does not require computationally complex processes namely fitting to a high-order autoregressive model, any initial estimates, nor matrix inversion. Performance analysis of the derived algorithm together with an existing method is given for comparison purposes. Index

[1]  Joseph M. Francos,et al.  Parameter estimation of two-dimensional moving average random fields , 1998, IEEE Trans. Signal Process..

[2]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[3]  Aydin Kizilkaya,et al.  ARMA model parameter estimation based on the equivalent MA approach , 2006, Digit. Signal Process..

[4]  Gerald Matz,et al.  Time-frequency-moving-average processes: principles and cepstral methods for parameter estimation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[6]  Byoungseon Choi A fundamental theorem of algebra, spectral factorization, and stability of two-dimensional systems , 2003, IEEE Trans. Signal Process..

[7]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[8]  J. M. Francos,et al.  Maximum likelihood parameter estimation of textures using a wold-decomposition based model , 1995, IEEE Transactions on Image Processing.

[10]  John W. Woods,et al.  Maximum-likelihood parameter estimation of discrete homogeneous random fields with mixed spectral distributions , 1996, IEEE Trans. Signal Process..

[11]  Petre Stoica,et al.  Total-Variance Reduction Via Thresholding: Application to Cepstral Analysis , 2007, IEEE Transactions on Signal Processing.

[12]  T. Marzetta Two-dimensional linear prediction: Autocorrelation arrays, minimum-phase prediction error filters, and reflection coefficient arrays , 1980 .

[13]  Dimitris G. Manolakis,et al.  Statistical and Adaptive Signal Processing , 2000 .

[14]  A. Kaderli,et al.  Spectral estimation of ARMA processes using ARMA-cepstrum recursion , 2000, IEEE Signal Processing Letters.

[15]  B. P. Bogert,et al.  The quefrency analysis of time series for echoes : cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking , 1963 .

[16]  Aydin Kizilkaya,et al.  Estimation of 2-D ARMA model parameters by using equivalent AR approach , 2005, J. Frankl. Inst..

[17]  Aydin Kizilkaya,et al.  ARMA-cepstrum Recursion Algorithm for the Estimation of the MA Parameters of 2-D ARMA Models , 2005, Multidimens. Syst. Signal Process..

[18]  M. Ekstrom,et al.  Two-dimensional spectral factorization with applications in recursive digital filtering , 1976 .

[19]  Joseph M. Francos,et al.  A unified texture model based on a 2-D Wold-like decomposition , 1993, IEEE Trans. Signal Process..