The lattice and quantized Yang–Mills theory

Quantized Yang–Mills fields lie at the heart of our understanding of the strong nuclear force. To understand the theory at low energies, we must work in the strong coupling regime. The primary technique for this is the lattice. While basically an ultraviolet regulator, the lattice avoids the use of a perturbative expansion. I discuss the historical circumstances that drove us to this approach, which has had immense success, convincingly demonstrating quark confinement and obtaining crucial properties of the strong interactions from first principles.

[1]  Alan D. Martin,et al.  Review of Particle Physics , 2000, Physical Review D.

[2]  Alan D. Martin,et al.  Review of Particle Physics , 2014 .

[3]  T. Lippert,et al.  Lattice QCD at the physical point: Light quark masses , 2010, 1011.2403.

[4]  Z. Fodor,et al.  The QCD transition temperature: Results with physical masses in the continuum limit , 2006, hep-lat/0609068.

[5]  M. Creutz YANG-MILLS FIELDS AND THE LATTICE , 2004, hep-lat/0406007.

[6]  Michael Creutz,et al.  Monte Carlo Study of Quantized SU(2) Gauge Theory , 1980 .

[7]  Claudio Rebbi,et al.  Experiments with a Gauge Invariant Ising System , 1979 .

[8]  J. L. Lopes,et al.  A model for leptons , 1977 .

[9]  A. Polyakov,et al.  Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .

[10]  C. Itzykson,et al.  Gauge fields on a lattice. II. Gauge-invariant Ising model , 1975 .

[11]  C. Itzykson,et al.  Gauge fields on a lattice. III. Strong-coupling expansions and transition points , 1975 .

[12]  C. Itzykson,et al.  Gauge fields on a lattice. I. General outlook , 1974 .

[13]  J. Lowenstein,et al.  Generalization of the momentum-space subtraction procedure for renormalized perturbation theory , 1974 .

[14]  Gerard 't Hooft,et al.  Dimensional regularization and the renormalization group , 1973 .

[15]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[16]  E. Weinberg Radiative Corrections as the Origin of Spontaneous Symmetry Breaking , 1973, hep-th/0507214.

[17]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[18]  F. Wegner Duality in Generalized Ising Models and Phase Transitions without Local Order Parameters , 1971 .

[19]  S. Weinberg Feynman Rules for Any Spin. III , 1969 .

[20]  Steven Weinberg,et al.  Feynman rules for any spin. II. Massless particles , 1964 .

[21]  Steven Weinberg,et al.  FEYNMAN RULES FOR ANY SPIN , 1964 .

[22]  J. C. Ward,et al.  Weak and electromagnetic interactions , 1959 .

[23]  R. L. Mills,et al.  Conservation of Isotopic Spin and Isotopic Gauge Invariance , 1954 .

[24]  W. Pauli,et al.  On the Invariant regularization in relativistic quantum theory , 1949 .

[25]  P. Cai,et al.  Reliable Perturbative Results for Strong Interactions ? , 2011 .

[26]  G. ’t Hooft,et al.  Computation of the quantum effects due to a four-dimensional pseudoparticle , 2011 .

[27]  Y. Makeenko Methods of Contemporary Gauge Theory: Gauge fields on a lattice , 2002 .

[28]  E. Eichten,et al.  Charmonium: Comparison with Experiment , 1980 .

[29]  S. Coleman Classical Lumps and Their Quantum Descendants , 1977 .

[30]  Murray Gell-Mann,et al.  The Eightfold way: a review with a collection of reprints , 1964 .