Numerical Solution of the Hamilton – Jacobi – Bellman Formulation for Continuous-Time Mean – Variance Asset Allocation Under Stochastic Volatility

We present efficient partial differential equation (PDE) methods for continuous-time mean-variance portfolio allocation problems when the underlying risky asset follows a stochastic volatility process. The standard formulation for mean-variance optimal portfolio allocation problems gives rise to a two-dimensional nonlinear Hamilton-Jacobi-Bellman (HJB) PDE. We use a wide stencil method based on a local coordinate rotation to construct a monotone scheme. Further, by using a semi-Lagrangian times stepping method to discretize the drift term, along with an improved linear interpolation method, accurate efficient frontiers are constructed. This scheme can be shown to be convergent to the viscosity solution of the HJB equation, and the correctness of the proposed numerical framework is verified by numerical examples. We also discuss the effects on the efficient frontier of the stochastic volatility model parameters.

[1]  D. Dijk,et al.  A comparison of biased simulation schemes for stochastic volatility models , 2008 .

[2]  J. Wang,et al.  Maximal Use of Central Differencing for Hamilton-Jacobi-Bellman PDEs in Finance , 2008, SIAM J. Numer. Anal..

[3]  Peter A. Forsyth,et al.  Better than Pre-Commitment Mean-Variance Portfolio Allocation Strategies: A Semi-Self-Financing Hamilton-Jacobi-Bellman Equation Approach , 2015, Eur. J. Oper. Res..

[4]  Kristian Debrabant,et al.  Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..

[5]  N. Shephard Stochastic volatility models , 2010 .

[6]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[7]  Suleyman Basak,et al.  Dynamic Mean-Variance Asset Allocation , 2009 .

[8]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[9]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[10]  Christian Kahl,et al.  Fast strong approximation Monte Carlo schemes for stochastic volatility models , 2006 .

[11]  Peter A. Forsyth,et al.  An unconditionally monotone numerical scheme for the two-factor uncertain volatility model , 2016 .

[12]  William T. Ziemba,et al.  Mean-variance versus expected utility in dynamic investment analysis , 2011, Comput. Manag. Sci..

[13]  Yuying Li,et al.  Preservation of Scalarization Optimal Points in the Embedding Technique for Continuous Time Mean Variance Optimization , 2014, SIAM J. Control. Optim..

[14]  Zhuliang Chen,et al.  A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation , 2007, SIAM J. Sci. Comput..

[15]  P. Nguyen,et al.  Dynamic asset allocation with mean variance preferences and a solvency constraint , 2002 .

[16]  Peter Forsyth,et al.  Continuous Time Mean-Variance Optimal Portfolio Allocation Under Jump Diffusion: An Numerical Impulse Control Approach , 2013 .

[17]  Erik Ekström,et al.  The Black–Scholes equation in stochastic volatility models , 2010 .

[18]  Elena Vigna On efficiency of mean–variance based portfolio selection in defined contribution pension schemes , 2014 .

[19]  P. Forsyth,et al.  COMBINED FIXED POINT AND POLICY ITERATION FOR HJB EQUATIONS IN FINANCE , 2010 .

[20]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[21]  P. Forsyth,et al.  COMPARISON OF MEAN VARIANCE LIKE STRATEGIES FOR OPTIMAL ASSET ALLOCATION PROBLEMS , 2012 .

[22]  P. Forsyth,et al.  Numerical solution of the Hamilton-Jacobi-Bellman formulation for continuous time mean variance asset allocation , 2010 .

[23]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[24]  Douglas T. Breeden An Intertemporal Asset Pricing Model with Stochastic Consumption and Investment Opportunities , 1979 .

[25]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[26]  P. Forsyth,et al.  Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .

[27]  Nicole Bäuerle,et al.  Complete markets do not allow free cash flow streams , 2015, Math. Methods Oper. Res..

[28]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .

[29]  P. A. Forsyth,et al.  Comparison Between the Mean-Variance Optimal and the Mean-Quadratic-Variation Optimal Trading Strategies , 2013 .

[30]  Duan Li,et al.  Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation , 2000 .

[31]  Duan Li,et al.  BETTER THAN DYNAMIC MEAN‐VARIANCE: TIME INCONSISTENCY AND FREE CASH FLOW STREAM , 2012 .

[32]  Yuying Li,et al.  Convergence of the embedded mean-variance optimal points with discrete sampling , 2016, Numerische Mathematik.

[33]  X. Zhou,et al.  CONTINUOUS‐TIME MEAN‐VARIANCE PORTFOLIO SELECTION WITH BANKRUPTCY PROHIBITION , 2005 .

[34]  Tomas Bjork,et al.  A General Theory of Markovian Time Inconsistent Stochastic Control Problems , 2010 .

[35]  Peter A. Forsyth,et al.  Numerical convergence properties of option pricing PDEs with uncertain volatility , 2003 .

[36]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[37]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.