Disguised and new quasi-Newton methods for nonlinear eigenvalue problems

In this paper, we take a quasi-Newton approach to nonlinear eigenvalue problems (NEPs) of the type M(λ)v = 0, where M:ℂ→ℂn×n$M:\mathbb {C}\rightarrow \mathbb {C}^{n\times n}$ is a holomorphic function. We investigate which types of approximations of the Jacobian matrix lead to competitive algorithms, and provide convergence theory. The convergence analysis is based on theory for quasi-Newton methods and Keldysh’s theorem for NEPs. We derive new algorithms and also show that several well-established methods for NEPs can be interpreted as quasi-Newton methods, and thereby, we provide insight to their convergence behavior. In particular, we establish quasi-Newton interpretations of Neumaier’s residual inverse iteration and Ruhe’s method of successive linear problems.

[1]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[2]  H. V. D. Vorst,et al.  The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme , 1995 .

[3]  Daniel Kressner,et al.  Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems , 2011, Numerische Mathematik.

[4]  On the residual inverse iteration for nonlinear eigenvalue problems admitting a Rayleigh functional , 2014 .

[5]  Michael R. Osborne,et al.  The numerical solution of eigenvalue problems in which the eigenvalue problems in which the eigenvalue parameter appears nonlinearly, with an application to differential equations , 1964, Comput. J..

[6]  Gerhard Unger,et al.  Convergence Orders of Iterative Methods for Nonlinear Eigenvalue Problems , 2013 .

[7]  Wolf-Jurgen Beyn,et al.  An integral method for solving nonlinear eigenvalue problems , 2010, 1003.1580.

[8]  Wim Michiels,et al.  A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems , 2012, SIAM J. Sci. Comput..

[9]  James C. Sutherland,et al.  Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software , 2011, TOMS.

[10]  Fei Xue,et al.  Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems , 2013, Numerische Mathematik.

[11]  Daniel B. Szyld,et al.  Several properties of invariant pairs of nonlinear algebraic eigenvalue problems , 2014 .

[12]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[13]  María D. González-Lima,et al.  A Newton-like method for nonlinear system of equations , 2009, Numerical Algorithms.

[14]  Daniel Kressner,et al.  A block Newton method for nonlinear eigenvalue problems , 2009, Numerische Mathematik.

[15]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[16]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[17]  K. Hadeler,et al.  A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .

[18]  Fei Xue,et al.  Efficient Preconditioned Inner Solves For Inexact Rayleigh Quotient Iteration And Their Connections To The Single-Vector Jacobi-Davidson Method , 2011, SIAM J. Matrix Anal. Appl..

[19]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[20]  C. Loan On estimating the condition of eigenvalues and eigenvectors , 1987 .

[21]  R. Mennicken,et al.  Non-Self-Adjoint Boundary Eigenvalue Problems , 2003 .

[22]  Jisheng Kou,et al.  The improvements of modified Newton's method , 2007, Appl. Math. Comput..

[23]  Kathrin Schreiber,et al.  Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals , 2008 .

[24]  Manfred Möller,et al.  Chapter III - Boundary eigenvalue problems for first order systems , 2003 .

[25]  Peter Cedric Effenberger Robust Solution Methods for Nonlinear Eigenvalue Problems , 2013 .

[26]  Wim Michiels,et al.  Analyzing the convergence factor of residual inverse iteration , 2011 .

[27]  H. Voss An Arnoldi Method for Nonlinear Eigenvalue Problems , 2004 .

[28]  T. Ypma Local Convergence of Inexact Newton Methods , 1984 .

[29]  The numerical solution of eigenvalue problems , 1965 .

[30]  B. Werner Das spektrum von Operatorscharen mit verallgemeinerten Rayleighquotienten , 1971 .

[31]  Marek J. Smietanski,et al.  Convergence of an inexact generalized Newton method with a scaled residual control , 2011, Comput. Math. Appl..

[32]  Olof Runborg,et al.  The Waveguide Eigenvalue Problem and the Tensor Infinite Arnoldi Method , 2015, SIAM J. Sci. Comput..

[33]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[34]  S. I. Solov'ëv,et al.  Preconditioned iterative methods for a class of nonlinear eigenvalue problems , 2006 .

[35]  Elias Jarlebring,et al.  Convergence factors of Newton methods for nonlinear eigenvalue problems , 2012 .

[36]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[37]  Jerome K. Butler,et al.  Floquet Multipliers of Periodic Waveguides via Dirichlet-to-Neumann Maps , 2000 .

[38]  Herbert H. H. Homeier A modified Newton method for rootfinding with cubic convergence , 2003 .

[39]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[40]  Xin Huang,et al.  NONLINEAR RANK-ONE MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM * , 2010 .

[41]  H. Unger,et al.  Nichtlineare Behandlung von Eigenwertaufgaben , 1950 .

[42]  Ruth F. Curtain,et al.  Partial fraction expansions for delay systems , 1988 .

[43]  Interpolation and local data for meromorphic matrix and operator functions , 1986 .

[44]  Avner Friedman,et al.  Nonlinear eigenvalue problems , 1968 .

[45]  E. Jarlebring,et al.  An iterative method for the multipliers of periodic delay-differential equations and the analysis of a PDE milling model , 2010 .

[46]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[47]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[48]  Peter Lancaster,et al.  LAMBDA-MATRICES, II , 1966 .

[49]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[50]  Heinrich Voss,et al.  Nonlinear Eigenvalue Problems , 2012 .