A chickpea genetic variation map based on the sequencing of 3,366 genomes

[1]  D. I. Givens,et al.  Millets Can Have a Major Impact on Improving Iron Status, Hemoglobin Level, and in Reducing Iron Deficiency Anemia–A Systematic Review and Meta-Analysis , 2021, Frontiers in Nutrition.

[2]  S. Anitha,et al.  Assessing Millets and Sorghum Consumption Behavior in Urban India: A Large-Scale Survey , 2021, Frontiers in Sustainable Food Systems.

[3]  M. Zhang,et al.  Pan-Genome of Wild and Cultivated Soybeans , 2020, Cell.

[4]  R. Varshney,et al.  Superior haplotypes for haplotype‐based breeding for drought tolerance in pigeonpea (Cajanus cajan L.) , 2020, Plant biotechnology journal.

[5]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[6]  Travis A. Parker,et al.  Pod indehiscence is a domestication and aridity resilience trait in common bean. , 2019, The New phytologist.

[7]  B. Hayes,et al.  Breeding improves wheat productivity under contrasting agrochemical input levels , 2019, Nature Plants.

[8]  P. Marjoram,et al.  WhoGEM: an admixture-based prediction machine accurately predicts quantitative functional traits in plants , 2019, Genome Biology.

[9]  Jun Wang,et al.  Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits , 2019, Nature Genetics.

[10]  Brook T. Moyers,et al.  Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance , 2018, Nature Plants.

[11]  Matthias Lange,et al.  Genebank genomics highlights the diversity of a global barley collection , 2018, Nature Genetics.

[12]  Chi Zhang,et al.  PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files , 2018, Bioinform..

[13]  Kenneth L. McNally,et al.  Genomic variation in 3,010 diverse accessions of Asian cultivated rice , 2018, Nature.

[14]  Peter J. Bradbury,et al.  Dysregulation of expression correlates with rare-allele burden and fitness loss in maize , 2018, Nature.

[15]  Qun Xu,et al.  Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice , 2018, Nature Genetics.

[16]  Mauricio O. Carneiro,et al.  Scaling accurate genetic variant discovery to tens of thousands of samples , 2017, bioRxiv.

[17]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[18]  E. Buckler,et al.  Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation , 2017, Nature Genetics.

[19]  Cristobal Uauy,et al.  Genomic innovation for crop improvement , 2017, Nature.

[20]  Yun S. Song,et al.  Robust and scalable inference of population history from hundreds of unphased whole genomes , 2016, Nature Genetics.

[21]  Jun Wang,et al.  Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.) , 2016, Scientific Reports.

[22]  C. K. Chan,et al.  The pangenome of an agronomically important crop plant Brassica oleracea , 2016, Nature Communications.

[23]  Yan Liang,et al.  Neglecting legumes has compromised human health and sustainable food production , 2016, Nature Plants.

[24]  Jennifer Geist Rutledge,et al.  Feeding the future , 2020, Food and Society.

[25]  J. Grimwood,et al.  Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity , 2016, Nature Biotechnology.

[26]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[27]  M. Heuertz,et al.  Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa , 2015, Front. Genet..

[28]  J. Woolliams,et al.  Genetic contributions and their optimization. , 2015, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[29]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[30]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[31]  George Graef,et al.  Genotyping by sequencing for genomic prediction in a soybean breeding population , 2014, BMC Genomics.

[32]  G. de los Campos,et al.  Genome-Wide Regression and Prediction with the BGLR Statistical Package , 2014, Genetics.

[33]  Nikolaos S. Alachiotis,et al.  SweeD: Likelihood-Based Detection of Selective Sweeps in Thousands of Genomes , 2013, Molecular biology and evolution.

[34]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[35]  James K. Hane,et al.  Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement , 2013, Nature Biotechnology.

[36]  Tatiana Popova,et al.  Supplementary Methods , 2012, Acta Neuropsychiatrica.

[37]  Jeffrey B. Endelman,et al.  Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP , 2011 .

[38]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[39]  Kenneth Lange,et al.  Enhancements to the ADMIXTURE algorithm for individual ancestry estimation , 2011, BMC Bioinformatics.

[40]  B. Kinghorn An algorithm for efficient constrained mate selection , 2011, Genetics Selection Evolution.

[41]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[42]  Thomas L. Madden,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[43]  R. Wilson,et al.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation , 2009, Nature Methods.

[44]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[45]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[46]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[47]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[48]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[49]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[50]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[51]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[52]  P. Caputo,et al.  Phylogenetic relationships among annual and perennial species of the genus Cicer as inferred from ITS sequences of nuclear ribosomal DNA , 2005, Biologia Plantarum.

[53]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[54]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[55]  F. Javadi,et al.  Interspecific relationships of the genus Cicer L. (Fabaceae) based on trnT-F sequences , 2004, Theoretical and Applied Genetics.

[56]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[57]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[58]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Andy South,et al.  rworldmap : a new R package for mapping global data , 2011, R J..

[60]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.