Synthesis and self-assembly of NCN-pincer Pd-complex-bound norvalines.

The NCN-pincer Pd-complex-bound norvalines Boc-D/L-[PdCl(dpb)]Nva-OMe (1) were synthesized in multigram quantities. The molecular structure and absolute configuration of 1 were unequivocally determined by single-crystal X-ray structure analysis. The robustness of 1 under acidic/basic conditions provides a wide range of N-/C-terminus convertibility based on the related synthetic transformations. Installation of a variety of functional groups into the N-/C-terminus of 1 was readily carried out through N-Boc- or C-methyl ester deprotection and subsequent condensations with carboxylic acids, R(1)COOH, or amines, R(2)NH2 , to give the corresponding N-/C-functionalized norvalines R(1)-D/L-[PdCl(dpb)]Nva-R(2) 2-9. The dipeptide bearing two Pd units 10 was successfully synthesized through the condensation of C-free 1 with N-free 1. The robustness of these Pd-bound norvalines was adequately demonstrated by the preservation of the optical purity and Pd unit during the synthetic transformations. The lipophilic Pd-bound norvalines L-2, Boc-L-[PdCl(dpb)]Nva-NH-n-C11H23, and L-4, n-C4H9CO-L-[PdCl(dpb)]Nva-NH-n-C11H23, self-assembled in aromatic solvents to afford supramolecular gels. The assembled structures in a thermodynamically stable single crystal of L-2 and kinetically stable supramolecular aggregates of L-2 were precisely elucidated by cryo-TEM, WAX, SAXS, UV/Vis, IR analyses, and single-crystal X-ray crystallography. An antiparallel β-sheet-type aggregate consisting of an infinite one-dimensional hydrogen-bonding network of amide groups and π-stacking of PdCl(dpb) moieties was observed in the supramolecular gel fiber of L-2, even though discrete dimers are assembled through hydrogen bonding in the thermodynamically stable single crystal of L-2. The disparate DSC profiles of the single crystal and xerogel of L-2 indicate different thermodynamics of the molecular assembly process.

[1]  M. Shiro,et al.  Study on 1,3,5-triazine chemistry in dehydrocondensation: gauche effect on the generation of active triazinylammonium species. , 2012, Chemistry.

[2]  M. Reetz Artificial metalloenzymes as catalysts in stereoselective Diels-Alder reactions. , 2012, Chemical record.

[3]  O. Yaghi,et al.  Isomers of metal-organic complex arrays. , 2012, Inorganic chemistry.

[4]  H. Takaya,et al.  Pd-complex-bound Amino Acid-based Supramolecular Gel Catalyst for Intramolecular Addition–Cyclization of Alkynoic Acids in Water , 2012 .

[5]  A. Martí,et al.  Recent trends in molecular beacon design and applications , 2012, Analytical and Bioanalytical Chemistry.

[6]  Mitsuhiko Shionoya,et al.  Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. , 2012, Accounts of chemical research.

[7]  H. Takaya,et al.  Metal array fabrication through self-assembly of Pt-complex-bound amino acids. , 2012, Chemical Communications.

[8]  H. Takaya,et al.  Synthesis and Supramolecular Association of NCN-Pincer Pd-Complex-bound Norvaline Derivatives toward Fabrication of Controlled Metal Array , 2012 .

[9]  H. Sleiman,et al.  Supramolecular DNA assembly. , 2011, Chemical Society reviews.

[10]  A. Ono,et al.  Binding of metal ions by pyrimidine base pairs in DNA duplexes. , 2011, Chemical Society reviews.

[11]  Fernando Albericio,et al.  Peptide coupling reagents, more than a letter soup. , 2011, Chemical reviews.

[12]  Thomas R Ward,et al.  Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. , 2011, Chemical communications.

[13]  Mahmoud Labib,et al.  Ferrocene-peptido conjugates: from synthesis to sensory applications. , 2011, Dalton transactions.

[14]  J. Correia,et al.  Radiometallated peptides for molecular imaging and targeted therapy. , 2011, Dalton transactions.

[15]  Paul C J Kamer,et al.  Bioinspired catalyst design and artificial metalloenzymes. , 2011, Chemistry.

[16]  V. Yam,et al.  Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. , 2011, Accounts of chemical research.

[17]  O. Yaghi,et al.  Synthesis of metal−organic complex arrays. , 2011, Journal of the American Chemical Society.

[18]  Takuma Yasuda,et al.  Functional Soft Materials: Nanostructured Liquid Crystals and Self-Assembled Fibrous Aggregates , 2010 .

[19]  R. Ulijn,et al.  Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. , 2010, Chemical Society reviews.

[20]  D. Woolfson,et al.  More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. , 2010, Chemical Society reviews.

[21]  B. Escuder,et al.  Supramolecular catalysis with extended aggregates and gels: inversion of stereoselectivity caused by self-assembly. , 2010, Chemistry.

[22]  B. Escuder,et al.  Supramolecular gels as active media for organic reactions and catalysis , 2010 .

[23]  Hiroshi Sugiyama,et al.  Hybridkatalysatoren auf DNA‐Basis für die asymmetrische organische Synthese , 2010 .

[24]  Soyoung Park,et al.  DNA-based hybrid catalysts for asymmetric organic synthesis. , 2010, Angewandte Chemie.

[25]  Seulki Lee,et al.  Peptides and peptide hormones for molecular imaging and disease diagnosis. , 2010, Chemical reviews.

[26]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[27]  T. Hirao,et al.  Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures. , 2010, Accounts of chemical research.

[28]  H. Nonaka,et al.  Binuclear Ni(II)-DpaTyr complex as a high affinity probe for an oligo-aspartate Tag tethered to proteins. , 2010, Chemistry, an Asian journal.

[29]  M. Kumke,et al.  Comparative Studies of Different Quinolinone Derivatives as Donors in Fluorescence‐Resonance‐Energy Transfer (FRET) – Systems in Combination with a (Bathophenanthroline)ruthenium(II) Complex as Acceptor , 2009 .

[30]  Shuang Liu Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. , 2009, Bioconjugate chemistry.

[31]  T. Kamachi,et al.  Porphyrin arrays responsive to additives. Fluorescence tuning. , 2009, Journal of the American Chemical Society.

[32]  B. Escuder,et al.  Remarkable increase in basicity associated with supramolecular gelation , 2009 .

[33]  W. Bannwarth,et al.  Alternative Solid-Phase Strategies for the Efficient Labelling of Peptides with (Bathophenanthroline)ruthenium(II) Complexes , 2009 .

[34]  B. Escuder,et al.  Switchable performance of an L-proline-derived basic catalyst controlled by supramolecular gelation. , 2009, Journal of the American Chemical Society.

[35]  K. Hanabusa,et al.  L-lysine-based low-molecular-weight gelators. , 2009, Chemical Society reviews.

[36]  G. Koten,et al.  Incorporating ECE-pincer metal complexes as functional building blocks in semisynthetic metalloenzymes, supramolecular polypeptide hybrids, tamoxifen derivatives, biomarkers and sensors , 2009 .

[37]  S. A. Raw,et al.  An improved process for the synthesis of DMTMM-based coupling reagents , 2009 .

[38]  U. Schubert,et al.  Prospects of metal complexes peripherally substituted with sugars in biomedicinal applications. , 2009, Chemistry.

[39]  M. Bradley,et al.  Amide bond formation: beyond the myth of coupling reagents. , 2009, Chemical Society reviews.

[40]  Z. Guan,et al.  Cycloaddition-promoted self-assembly of a polymer into well-defined beta sheets and hierarchical nanofibrils. , 2009, Angewandte Chemie.

[41]  J. Zubieta,et al.  Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals. , 2009, Chemical communications.

[42]  B. W. Erickson,et al.  Synthesis of redox derivatives of lysine and related peptides containing phenothiazine or tris(2,2'-bipyridine)ruthenium(II). , 2009, International journal of peptide and protein research.

[43]  T. Shimizu Molecular Self-Assembly into One-Dimensional Nanotube Architectures and Exploitation of Their Functions , 2008 .

[44]  Samuel I Stupp,et al.  Molecular self-assembly into one-dimensional nanostructures. , 2008, Accounts of chemical research.

[45]  Bing Xu,et al.  High catalytic activities of artificial peroxidases based on supramolecular hydrogels that contain heme models. , 2008, Chemistry.

[46]  Glyn L. Devlin,et al.  Modification of fluorophore photophysics through peptide-driven self-assembly. , 2008, Journal of the American Chemical Society.

[47]  T. Ward,et al.  Artificial metalloenzymes as selective catalysts in aqueous media , 2008 .

[48]  B. König,et al.  The Use of Solid‐Phase Synthesis Techniques for the Preparation of Peptide–Metal Complex Conjugates , 2008 .

[49]  Yoshihito Watanabe,et al.  Coordination design of artificial metalloproteins utilizing protein vacant space , 2007 .

[50]  Jong Kang Park,et al.  Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters , 2007 .

[51]  S. Stupp,et al.  A self-assembled nanofiber catalyst for ester hydrolysis. , 2007, Journal of the American Chemical Society.

[52]  K. Hanabusa,et al.  Self-assembly of carbazole-containing gelators: alignment of the chromophore in fibrous aggregates , 2007 .

[53]  P. Hanson,et al.  Solid-phase synthesis of metal-complex containing peptides , 2007 .

[54]  Bing Xu,et al.  A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. , 2007, Angewandte Chemie.

[55]  W. Beck,et al.  Metallkomplexe mit biologisch wichtigen Liganden. CLXVI Metallkomplexe mit Ferrocenylmethyl‐L‐cysteinat und 1,1′‐Ferrocenylbis‐(methyl‐L‐cysteinat) als Liganden , 2007 .

[56]  H. Takaya,et al.  Ultrasound-induced gelation of organic fluids with metalated peptides. , 2007, Angewandte Chemie.

[57]  T. Nakazawa,et al.  High sequence-coverage detection of proteolytic peptides using a bis(terpyridine)ruthenium(II) complex. , 2007, The Analyst.

[58]  Bing Xu,et al.  Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents. , 2007, Chemical communications.

[59]  S. Kimura,et al.  Columnar assembly formation and metal binding of cyclic tri-beta-peptides having terpyridine ligands. , 2007, Organic letters.

[60]  Luis Castedo,et al.  Controlling multiple fluorescent signal output in cyclic peptide-based supramolecular systems. , 2007, Journal of the American Chemical Society.

[61]  Takashi Kato,et al.  Color-tunable fluorescent organogels: columnar self-assembly of pyrene-containing oligo(glutamic acid)s. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[62]  Y. Mori,et al.  Oligo-Asp tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. , 2006, Journal of the American Chemical Society.

[63]  N. Metzler‐Nolte Conjugates of Peptides and PNA with Organometallic Complexes: Syntheses and Applications , 2006 .

[64]  M. Manassero,et al.  The first pincer-aryl [M–(NCN)] complexes {M = Pd(II); Pt(II)} with chiral pyridine donors: Synthesis and catalytic activity in C–C bond formation , 2006 .

[65]  B. Kolesińska,et al.  N-triazinylammonium tetrafluoroborates. A new generation of efficient coupling reagents useful for peptide synthesis. , 2005, Journal of the American Chemical Society.

[66]  S. Stupp,et al.  Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers , 2005 .

[67]  Takashi Kato,et al.  Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. , 2005, Journal of the American Chemical Society.

[68]  Neralagatta M Sangeetha,et al.  Supramolecular gels: functions and uses. , 2005, Chemical Society reviews.

[69]  V. Yam,et al.  Luminescent platinum(II) terpyridyl complexes: effect of counter ions on solvent-induced aggregation and color changes. , 2005, Chemistry.

[70]  Bradley D. Smith,et al.  Anion-mediated phase transfer of Zinc(II)-coordinated tyrosine derivatives. , 2005, Organic letters.

[71]  M. Albrecht,et al.  Metallacyclopeptides: artificial analogues of naturally occurring peptides. , 2005, Chemical Society reviews.

[72]  S. Shinkai,et al.  Design of Novel Composite Materials by Functional Low Molecular-Weight Organogels , 2005 .

[73]  N. Metzler‐Nolte,et al.  Bioorganometallic chemistry of ferrocene. , 2004, Chemical reviews.

[74]  P. Mussini,et al.  A new ferrocene conjugate of a tyrosine PNA monomer: synthesis and electrochemical properties , 2004 .

[75]  J. Ripmeester,et al.  Dipeptides as microporous materials. , 2004, Angewandte Chemie.

[76]  K. Terao,et al.  Substrate-Specific Amidation of Carboxylic Acids in a Liquid−Liquid Two-Phase System Using Cyclodextrins as Inverse Phase-Transfer Catalysts , 2004 .

[77]  F. Vögtle,et al.  Chiral Gelators Constructed from 11-Aminoundecanoic (AUDA), Lauric and Amino Acid Units. Synthesis, Gelling Properties and Preferred Gelation of Racemates vs. the Pure Enantiomers , 2004 .

[78]  S. D. Hudson,et al.  Self-assembly of amphiphilic dendritic dipeptides into helical pores , 2004, Nature.

[79]  J. Brennan,et al.  Bridging the gap between in vitro and in vivo imaging: isostructural Re and 99mTc complexes for correlating fluorescence and radioimaging studies. , 2004, Journal of the American Chemical Society.

[80]  G. Zinzalla,et al.  A Thymine-PNA Monomer as New Isocyanide Component in the Ugi Reaction: A Direct Entry to PNA Dimers , 2004 .

[81]  P. S. Chae,et al.  Degradation of myoglobin by polymeric artificial metalloproteases containing catalytic modules with various catalytic group densities: site selectivity in peptide bond cleavage. , 2003, Journal of the American Chemical Society.

[82]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[83]  M. Salmain,et al.  Synthesis of the first chiral PNA monomer labelled with a Fischer-type carbene complex , 2003 .

[84]  M. Albrecht,et al.  Peptide/Metal-Ligand Hybrids for the Metal-Assisted Stabilization of Peptide-Microstructures , 2003 .

[85]  R. Alsfasser,et al.  Luminescent, Cu2+-binding chromophore–spacer–receptor conjugates derived from ruthenium-substituted lysine , 2003 .

[86]  W. Sheldrick,et al.  Preparation, Reactivity and Peptide Labelling Properties of (η6-Arene)ruthenium(II) Complexes with Pendant Carboxylate Groups , 2003 .

[87]  G. Koten,et al.  The Suzuki cross-coupling reaction: a powerful tool for the attachment of organometallic 'NCN'-pincer units to biological scaffolds , 2003 .

[88]  M. Albrecht,et al.  Covalently bonded platinum(II) complexes of alpha-amino acids and peptides as a potential tool for protein labeling. , 2002, Chemistry.

[89]  M. Gross,et al.  Novel porphyrinic peptides with assigned sequence of metallated chromophores, a further step towards redox switches , 2002 .

[90]  G. Zinzalla,et al.  Synthesis of chiral chromium tricarbonyl labeled thymine PNA monomers via the Ugi reaction. , 2002, Organic letters.

[91]  S. Yano,et al.  Recent progress of functional glycoconjugated metal complexes , 2002 .

[92]  G. Koten,et al.  Platinum-pincer introduction using active ester chemistry , 2002 .

[93]  P. Sadler,et al.  Reactions of a ruthenium(II) arene antitumor complex with cysteine and methionine. , 2002, Inorganic chemistry.

[94]  V. Yam,et al.  Solvent-induced aggregation through metal...metal/pi...pi interactions: large solvatochromism of luminescent organoplatinum(II) terpyridyl complexes. , 2002, Journal of the American Chemical Society.

[95]  T. Frejd,et al.  Synthesis and conformational studies of a Leu-enkephalin amide analogue containing a ferrocene substructure , 2002 .

[96]  D. Herebian,et al.  Synthesis and DNA binding properties of bioorganometallic (η5-pentamethylcyclopentadienyl)iridium(III) complexes of the type [(η5-C5Me5)Ir(Aa)(dppz)]n+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine, n= 1–3), with S-coordinated amino acids (Aa) or peptides , 2002 .

[97]  T. Raynham,et al.  Enantiomerically Pure α-Amino Acid Synthesis via Hydroboration−Suzuki Cross-Coupling , 2002 .

[98]  K. Polborn,et al.  α‐Amino Acids with Metallocenyl Side Chains , 2002 .

[99]  B. Bowler,et al.  A ruthenium(II) tris(bipyridyl) amino acid: synthesis and direct incorporation into an alpha-helical peptide by solid-phase synthesis. , 2002, Inorganic chemistry.

[100]  M. Albrecht,et al.  Platinum Group Organometallics Based on "Pincer" Complexes: Sensors, Switches, and Catalysts. , 2001, Angewandte Chemie.

[101]  M. Albrecht,et al.  Metallorganische Pinzetten‐Komplexe von Elementen der Platingruppe: Sensoren, Schalter und Katalysatoren , 2001 .

[102]  Y. Tor,et al.  Lowering the symmetry of difunctionalized coordination compounds via nucleophilic aromatic substitutions , 2001 .

[103]  Juan R. Granja,et al.  Antibacterial agents based on the cyclic d,l-α-peptide architecture , 2001, Nature.

[104]  A. Ritzén,et al.  Synthesis and conformational studies of a 1,1′-ferrocenophane lactam mimetic of substance P , 2001 .

[105]  W. Steglich,et al.  2-Cyclopentadienylglycine, a new α-amino acid and its use for η5-complex formation , 2001 .

[106]  E. Sudhölter,et al.  N-Cholyl Amino Acid Alkyl Esters - A Novel Class of Organogelators , 2001 .

[107]  K. Dötz,et al.  Metal glycosylidenes: novel organometallic tools for C-glycosidation , 2001 .

[108]  T. Hirao,et al.  Chirality organization of ferrocenes bearing podand dipeptide chains: synthesis and structural characterization. , 2001, Journal of the American Chemical Society.

[109]  D. Steinborn,et al.  Carbohydrate complexes of platinum-group metals. , 2000, Chemical reviews.

[110]  Philip N. Collier,et al.  The direct synthesis of novel enantiomerically pure α-amino acids in protected form via Suzuki cross-coupling , 2000 .

[111]  B. Feringa,et al.  New Functional Materials Based on Self‐Assembling Organogels: From Serendipity towards Design , 2000 .

[112]  Ben L. Feringa,et al.  Neue funktionelle Materialien aus selbstorganisierten organischen Gelen: vom Zufall zur Planung , 2000 .

[113]  L. Serpell,et al.  Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly:  implications for amyloid fibril formation and materials science. , 2000, Journal of the American Chemical Society.

[114]  T. Aida,et al.  Dendritic Physical Gel: Hierarchical Self-Organization of a Peptide-Core Dendrimer to Form a Micrometer-Scale Fibrous Assembly , 2000 .

[115]  K. Terao,et al.  4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride: an efficient condensing agent leading to the formation of amides and esters , 1999 .

[116]  D. Grotjahn Arene-selective peptide and protein derivatization , 1999 .

[117]  Shuang Liu,et al.  99mTc-Labeled Small Peptides as Diagnostic Radiopharmaceuticals. , 1999, Chemical reviews.

[118]  K. Terao,et al.  Synthesis and characterization of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride , 1999 .

[119]  Stefan Matile,et al.  Self-Assembled Rigid-Rod Ionophores , 1999 .

[120]  Katsuhiko Ariga,et al.  Regulation of β-Sheet Structures within Amyloid-Like β-Sheet Assemblage from Tripeptide Derivatives , 1998 .

[121]  D. Brune,et al.  High Arenophilicity and Water Tolerance in Direct Derivatization of Peptides and Proteins by Metal π-Coordination , 1998 .

[122]  K. Severin,et al.  Bioorganometallic Chemistry - Transition Metal Complexes with α-Amino Acids and Peptides. , 1998, Angewandte Chemie.

[123]  R. Alsfasser,et al.  Intramolecular Luminescence Quenching in Amino Acid Bridged Ruthenium(II)-Copper(II) Complexes with Negligible Ground-State Coupling , 1998 .

[124]  W. Beck,et al.  Biometallorganische Chemie – Übergangsmetallkomplexe mit α‐Aminosäuren und Peptiden , 1998 .

[125]  Z. Kaminski,et al.  A Study on the Activation of Carboxylic Acids by Means of 2-Chloro-4,6-dimethoxy-1,3,5-triazine and 2-Chloro-4,6-diphenoxy-1,3,5-triazine , 1998 .

[126]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[127]  J. Janetka,et al.  Total Synthesis of the Cyclic Biphenyl Ether Peptides K-13 and OF4949-III via SNAr Macrocyclization of Peptidyl Ruthenium π-Arene Complexes , 1997 .

[128]  G. Bignan,et al.  Synthesis of an Epimer of a 16-Membered Ring Model for Teicoplanin: Confirmation of Epimerization during Cycloamidation. , 1997, The Journal of organic chemistry.

[129]  A. Ritzén,et al.  Synthesis of optically active 1,1′-ferrocenylene-bis-alanine carrying four different protecting groups , 1997 .

[130]  S. Radford,et al.  Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes , 1997, Nature.

[131]  W. Sheldrick,et al.  Bis(arene) ruthenium(II) complexes containing η6-coordinated phenylalanine derivatives , 1997 .

[132]  M. Masuda,et al.  Vesicle assembly in microtubes , 1996, Nature.

[133]  M. Block,et al.  Direct Synthesis of Metal-Complexed Aromatic Amino Acid Derivatives by Palladium-Catalysed Coupling Processes , 1996 .

[134]  A. A. Semenov,et al.  Targeting of Pallada- and Platinacycles to the N-((tert-Butyloxy)carbonyl)-l-methionine p-Nitrophenyl Ester for Promotion of the Ester Cleavage , 1996 .

[135]  G. Bignan,et al.  Studies on the applications of arene-ruthenium complexes in synthetic approaches to vancomycin: a mild procedure for the selective formation of chlorinated aryl ethers and triaryl diethers , 1996 .

[136]  P. Haris,et al.  The conformational analysis of peptides using fourier transform IR spectroscopy , 1995, Biopolymers.

[137]  Kieseung Lee,et al.  SYNTHESIS OF A 16-MEMBERED CYCLIC PEPTIDE MODEL OF THE BCF RINGS OF RISTOCETIN A USING ARENE-RUTHENIUM CHEMISTRY COUPLED WITH CYCLOAMIDATION , 1995 .

[138]  R. H. Berg,et al.  Synthesis of Peptide Nucleic Acid Monomers Containing the Four Natural Nucleobases: Thymine, Cytosine, Adenine, and Guanine and Their Oligomerization , 1994 .

[139]  W. Sheldrick ?5-Pentamethylcyclopentadienylruthenium(II) complexes containing ?6-coordinated a-amino acids , 1994 .

[140]  A. J. Pearson,et al.  Synthesis of a 14-Membered Cyclic Peptide Model of the CFG Rings of Ristocetin A and Observations on Atropdiastereoisomerism , 1994 .

[141]  A. J. Pearson,et al.  A formal total synthesis of the ACE inhibitor K-13. An application of arene-ruthenium chemistry to complex chemical synthesis , 1994 .

[142]  P. Roller,et al.  Secondary structure of proteins associated in thin films , 1993, Biopolymers.

[143]  Dennis M. Whitfield,et al.  Metal coordination to carbohydrates. Structures and function , 1993 .

[144]  W. König,et al.  Enantioselective catalysis 83. Synthesis of optically active ferrocenylalanine , 1993 .

[145]  A. J. Pearson,et al.  Studies on ristocetin A. A synthesis of protected ristomycinic acid using organomanganese chemistry , 1992 .

[146]  P. Zhu,et al.  Studies on selective nucleophilic substitution reactions of [(cyclopentadienyl)(1,3-dichlorobenzene)M]+ PF6- complexes (M = iron, ruthenium) , 1992 .

[147]  A. J. Pearson,et al.  Model studies on the synthesis of carboxylate-binding pocket analogs of vancomycin using arene-ruthenium chemistry , 1992 .

[148]  A. J. Pearson,et al.  Studies on the synthesis of aryl ethers using arene-manganese chemistry , 1991 .

[149]  F. Rose-munch,et al.  Synthèse et étude conformationnelle de complexes obtenus par action d'anions d'α-iminoesters ou nitriles sur des halogénobenzènetricarbonylchrome , 1991 .

[150]  T. Frejd,et al.  Synthesis of 1,1'-bis(2-amino-2-carboxyethyl)ferrocene [1,1'-ferrocenyl bis(alanine)] , 1990 .

[151]  T. Frejd,et al.  Palladium-Catalyzed Synthesis of Didehydroamino Acid Derivatives , 1989 .

[152]  R. Moriarty,et al.  Synthesis and characterization of cyclopentadienylruthenium(II) complexes of aromatic amino acid derivatives , 1989 .

[153]  Z. Kaminski 2-Chloro-4,6-dimethyl-1,3,5-triazine. A New Coupling Reagent for Peptide Synthesis. , 1988 .

[154]  S. Hsu,et al.  Preparation of diaryl ethers from tyrosine or 4-hydroxyphenylglycine using organomanganese chemistry , 1986 .

[155]  T. Kunitake,et al.  Optical microscopic study of helical superstructures of chiral bilayer membranes , 1985 .

[156]  W. Soine,et al.  Synthesis and biological evaluation of radiolabeled beta-ruthenocenylalanine. , 1984, Journal of medicinal chemistry.

[157]  C. Sergheraert,et al.  Tricarbonylchromium tryptophan derivatives and their use in peptide synthesis , 1982 .

[158]  C. Sergheraert,et al.  New metallocenic phenylalanine analogs , 1981 .

[159]  N. Nevskaya,et al.  Infrared spectra and resonance interaction of amide‐I vibration of the antiparallel‐chain pleated sheet , 1976, Biopolymers.

[160]  E. Blout,et al.  The Infrared Spectra of Polypeptides in Various Conformations: Amide I and II Bands1 , 1961 .

[161]  C. Hauser,et al.  Certain Alkylations with the Methiodide of N,N-Dimethylaminomethylferrocene. Synthesis of an α-Amino Acid Having the Ferrocene Group1 , 1957 .

[162]  K. Schlögl Über Ferrocen-Aminosäuren und verwandte Verbindungen , 1957 .

[163]  N. Metzler‐Nolte Biomedical Applications of Organometal–Peptide Conjugates , 2010 .

[164]  R. Weiss,et al.  Low Molecular-Mass Organic Gelators , 2006 .

[165]  J. Zubieta,et al.  A new strategy for the preparation of peptide-targeted radiopharmaceuticals based on an fmoc-lysine-derived single amino acid chelate (SAAC). automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)3)+]G. , 2004, Bioconjugate chemistry.

[166]  J. Fichna,et al.  Synthesis of target-specific radiolabeled peptides for diagnostic imaging. , 2003, Bioconjugate chemistry.

[167]  R. Ziessel,et al.  Chiral Bipyridine and Terpyridine Ligands Grafted with l-Tyrosine Fragments , 2001 .

[168]  Y. Tor,et al.  Coordination compounds as building blocks: simple synthesis of RuII-containing amino acids and peptides , 1999 .

[169]  S. Shinkai,et al.  Cholesterol-based functional tectons as versatile building-blocks for liquid crystals, organic gels and monolayers , 1998 .

[170]  M. Sisido,et al.  SYNTHESIS AND REDOX PROPERTY OF POLYPEPTIDES CONTAINING L-FERROCENYLALANINE , 1997 .

[171]  A. Kiss,et al.  Spectroscopic and potentiometric studies on the interaction of trans-[(MeH2N)2Pt(mcyt)2PdCl]NO3(mcyt = 1-methylcytosinate) with derivatives of amino acids , 1995 .

[172]  A. Gleichmann,et al.  η5-Pentamethylcyclopentadienylruthenium(II) complexes containing η6-co-ordinated dipeptides with aromatic side chains , 1995 .

[173]  J. Janetka,et al.  Synthesis of peptidyl ruthenium .pi.-arene complexes: application to the synthesis of cyclic biphenyl ether peptides. , 1995 .

[174]  J. Makarević,et al.  A novel type of small organic gelators: bis(amino acid) oxalyl amides , 1995 .

[175]  J. Genêt,et al.  Schiff Base Nucleophiles : Progress Towards the General Application of Organoiron Complexes in Amino Acid Synthesis , 1994 .

[176]  K. Hanabusa,et al.  Small molecular gelling agents to harden organic liquids: alkylamide of N-benzyloxycarbonyl-L-valyl-L-valine , 1993 .

[177]  L. Kane-Maguire,et al.  Selective labelling of peptides using (dienyl) iron tricarbonyl cations , 1993 .

[178]  K. Hanabusa,et al.  A small molecular gelling agent for organic liquids: N-benzyloxycarbonyl-L-alanine 4-hexadecanoyl-2-nitrophenyl ester , 1992 .

[179]  M. Dunn,et al.  Reactions of a Serine-derived Zinc/Copper Reagent with Tricarbonyl(cyclohexadienyl) Iron Salts: Synthesis of Protected Amino Acids , 1992 .

[180]  J. Lavergne,et al.  Reactions of fluorobenzene tricarbonylchromium complexes with anions from Schiff bases of α-amino esters; enantioselective synthesis of α-aryl amino acids , 1991 .

[181]  A. Stewart,et al.  Selective protection of cysteine with ferrocene derivatives. Part 2. Synthesis of glutathione , 1990 .

[182]  Ing. Zbigniew J. Kamiński Reaction of 2‐chloro‐4,6‐dimethoxy‐(diaryloxy)‐1,3,5‐triazines with carboxylic acids leading to hitherto unknown 2‐Acyloxy‐4,6‐Dimethoxy‐(Diaryloxy)‐1,3,5‐Triazines , 1990 .

[183]  A. J. Pearson,et al.  Stereoselective synthesis of arylglycine derivatives using arene–manganese tricarbonyl complexes , 1989 .

[184]  A. J. Pearson,et al.  A mild procedure for the selective formation of aryl ethers and triaryl diethers using arene–M–CP cations (M = Fe, Ru; Cp =η5-cyclopentadienyl) , 1989 .

[185]  J. Beaucourt,et al.  Cobalt-carbonyl complexes of some peptides as infrared markers , 1988 .

[186]  G. Jaouen,et al.  Organometallic derivatives of peptides: Application to peptide receptor analysis , 1988 .

[187]  Š. Kaluz,et al.  Preparation of 1' and 2-substituted ferrocenylalanine derivatives , 1988 .

[188]  R. Moriarty,et al.  Novel cyclopentadienyl ruthenium(II) complexes of biologically important compounds , 1987 .

[189]  C. Sergheraert,et al.  Incorporation of the tricarbonylchromium ligand in aqueous media on the side chain of aromatic amino-acids , 1982 .

[190]  K. Bláha,et al.  The optically active 3-ferrocenylalanine and its application in peptide chemistry , 1980 .

[191]  J. Osgerby,et al.  128. Ferrocene derivatives. Part VI. DL-ferrocenylalanine , 1958 .