Three-port reversible logic.

Reliable optical switching at a nonlinear interface is obtained from the symmetry of a two-beam information lossless interaction. The device configuration, which is noise insensitive and cascadable, performs bit-conserving inverse and product functions reversibly. Numerical computations of the optical field redistribution at a dual-beam interface with opposing diffusive Kerr nonlinearities show the first reported evidence of Gaussianlike switching with high contrast.

[1]  Rolf Landauer,et al.  Fundamental Physical Limitations of the Computational Process , 1984 .

[2]  J Shamir,et al.  Optical computing and the Fredkin gates. , 1986, Applied optics.

[3]  D. Marcuse,et al.  Reflection of a Gaussian beam from a nonlinear interface. , 1980, Applied optics.

[4]  K. Johnson,et al.  Optical Computing And Image Processing With Ferroelectric Liquid Crystals , 1987 .

[5]  E. Wright,et al.  BEAM PROPAGATION IN A MEDIUM WITH A DIFFUSIVE KERR-TYPE NONLINEARITY. , 1985 .

[6]  R Cuykendall,et al.  Reversible optical computing circuits. , 1987, Optics letters.

[7]  Rolf Landauer,et al.  Computation and physics: Wheeler's meaning circuit? , 1986 .

[8]  W. Tomlinson,et al.  Experimental studies of a nonlinear interface , 1981 .

[9]  W. Tomlinson,et al.  Nonlinear optical interfaces: Switching behavior , 1984 .

[10]  D. Miller,et al.  Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures , 1984 .

[11]  R Cuykendall,et al.  Control-specific optical Fredkin circuits. , 1987, Applied optics.

[12]  J. M. Herman,et al.  Optical bistability at a nonlinear interface (A) , 1979 .

[13]  R. Feynman Quantum mechanical computers , 1986 .

[14]  Lutz Priese,et al.  ON A SIMPLE COMBINATORIAL STRUCTURE SUFFICIENT FOR SYBLYING NONTRIVIAL SELF-REPRODUCTION , 1976 .

[15]  P. W. Smith,et al.  Reflection of a Gaussian beam at a nonlinear interface. , 1982, Applied optics.

[16]  Adolf W. Lohmann,et al.  Polarization and optical bistability. , 1986, Applied optics.

[17]  David R. Andersen,et al.  Reversible computing: All-optical implementation of interaction and priese gates , 1987 .