Assessment of implicit and explicit models for different photovoltaic modules technologies

Effective use of photovoltaic (PV) modules requires reliable models for a number of applications, such as monitoring the performance of PV systems, estimating the produced power and plant design, etc. Development of accurate and simple models for different PV technologies remains a big challenge. In this paper, a comparative study of seven implicit and explicit models, published in the literature, is presented. The predicted current-voltage characteristics of the main commercial PV module technologies (multi-crystalline Silicon, Copper Indium Gallium Selenide, and Cadmium Telluride), have been compared both with the ones from the datasheet and with the ones obtained experimentally. Moreover, the investigated models have also been evaluated in terms of accuracy, required parameters, generalisation capability and complexity.

[1]  Pedro Rodriguez,et al.  PV panel model based on datasheet values , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[2]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[3]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[4]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[5]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[6]  William Gerard Hurley,et al.  A thermal model for photovoltaic panels under varying atmospheric conditions , 2010 .

[7]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[8]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[9]  S. Karmalkar,et al.  A Physically Based Explicit $J$ – $V$ Model of a Solar Cell for Simple Design Calculations , 2008, IEEE Electron Device Letters.

[10]  Vincenzo Franzitta,et al.  Assessment of the Operating Temperature of Crystalline PV Modules Based on Real Use Conditions , 2014 .

[11]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[12]  A. Das Analytical expression of the physical parameters of an illuminated solar cell using explicit J–V model , 2013 .

[13]  A. Das An explicit J–V model of a solar cell for simple fill factor calculation , 2011 .

[14]  Kashif Ishaque,et al.  Simple, fast and accurate two-diode model for photovoltaic modules , 2011 .

[15]  Martin A. Green,et al.  Solar cell efficiency tables (version 48) , 2016 .

[16]  A. Massi Pavan,et al.  Explicit empirical model for general photovoltaic devices: Experimental validation at maximum power point , 2014 .

[17]  Mikhail Sorin,et al.  Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point , 2011 .

[18]  G. Petrone,et al.  About the identification of the single-diode model parameters of high-fill-factor photovoltaic modules , 2015, 2015 International Conference on Clean Electrical Power (ICCEP).

[19]  N. Veissid,et al.  Experimental investigation of the double exponential model of a solar cell under illuminated conditions: Considering the instrumental uncertainties in the current, voltage and temperature values , 1995 .

[20]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[21]  Gustavo Nofuentes,et al.  Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates , 2014 .

[22]  S. Karmalkar,et al.  Analytical Derivation of the Closed-Form Power Law $J$ –$V$ Model of an Illuminated Solar Cell From the Physics Based Implicit Model , 2011, IEEE Transactions on Electron Devices.

[23]  J. Carretero,et al.  Energy performance of different photovoltaic module technologies under outdoor conditions , 2014 .

[24]  Alessandro Massi Pavan,et al.  A study on the mismatch effect due to the use of different photovoltaic modules classes in large‐scale solar parks , 2014 .

[25]  Hans S. Rauschenbach,et al.  Solar-cell array design handbook , 1980 .

[26]  S. Karmalkar,et al.  The power law J―V model of an illuminated solar cell , 2011 .

[27]  Alessandro Massi Pavan,et al.  Photovoltaics in Italy: Toward grid parity in the residential electricity market , 2012, 2012 24th International Conference on Microelectronics (ICM).

[28]  Lana S. Pantić,et al.  The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia , 2016 .

[29]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[30]  L. Hontoria,et al.  Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods , 2010 .

[31]  Rosario Miceli,et al.  A procedure to calculate the I–V characteristics of thin-film photovoltaic modules using an explicit rational form , 2015 .

[32]  A. Massi Pavan,et al.  An innovative photovoltaic field simulator for hardware-in-the-loop test of power conditioning units , 2009, 2009 International Conference on Clean Electrical Power.

[33]  T. Khatib,et al.  Extraction of photovoltaic module model's parameters using an improved hybrid differential evolution/electromagnetism-like algorithm , 2015 .