Relevance of Positron Emission Tomography (PET) in Oncology

Background: The clinical use of positron emission tomography (PET) for detection and staging of malignant tumors is rapidly increasing. Furthermore, encouraging results for monitoring the effects of radio- and chemotherapy have been reported. Methods: This review describes the technical principles of PET and the biological characteristics of tracers used in oncological research and patient studies. The results of clinical studies published in peer reviewed journals during the last 5 years are summarized and clinical indications for PET scans in various tumor types are discussed. Results and Conclusions: Numerous studies have documented the high diagnostic accuracy of PET studies using the glucose analogue F-18-fluordeoxyglucose (FDG-PET) for detection and staging of malignant tumors. In this field, FDG-PET has been particularly successful in lung cancer, colorectal cancer, malignant lymphoma and melanoma. Furthermore, FDG-PET has often proven to be superior to morphological imaging techniques for differentiation of tumor recurrence from scar tissue. Due to the high glucose utilization of normal gray matter radiolabeled amino-acids like C-11-methionine are superior to FDG for detection and delineation of brain tumors by PET. In the future, more specific markers of tumor cell proliferation and gene expression may allow the application of PET not only for diagnostic imaging also but for non-invasive biological characterization of malignant tumors and early monitoring of therapeutic interventions.Hintergrund: Die Positronenemissionstomographie (PET) wird zunehmend in der Diagnostik onkologischer Erkrankungen eingesetzt. Auch in der Therapiekontrolle von Strahlen- und Chemotherapie maligner Tumoren wurde vielversprechende Ergebnisse berichtet. Methodik: Diese Übersicht beschreibt die technischen Grundlagen von PET-Untersuchungen und die biologischen Eigenschaften von Markern, die in der onkologischen Forschung und klinischen Diagnostik eingesetzt werden. Ergebnisse von in den letzten fünf Jahren in “peer-reviewed” Zeitschriften veröffentlichten klinischen Studien sind zusammengestellt, und klinische Indikationen für PET-Untersuchungen werden diskutiert. Ergebnisse und Schlußfolgerungen: In zahlreichen Studien wurde eine hohe diagnostische Genauigkeit der PET beim Nachweis und Staging maligner Tumoren unter Verwendung des Glucoseanalogons F-18-Fluordeoxyglucose (FDG) nachgewiesen. Die Anwendung der FDG-PET erwies sich als besonders erfolgreich bei Kopf-Hals-Tumoren, Bronchialkarzinomen, kolorektalen Karzinomen, malignen Melanomen und Lymphomen. Es wurde außerdem gezeigt, daß die FDG-PET bei der Differenzierung von Tumorrezidiven und therapiebedingten Veränderungen häufig der konventionellen bildgebenden Diagnostik überlegen ist. Bei der Diagnostik von Hirntumoren bieten radioaktiv markierte Aminosäuren wie C-11-Methionin aufgrund des hohen Glucosestoffwechsels der normalen grauen Stubstanz Vorteile gegenüber FDGT. Neue spezifische Marker für Tumorzellproliferation und Genexpression sind vielversprechende Ansätze für eine biologische Charakterisierung von Tumoren und Kontrolle von Therapieeffekten mittels PET.

[1]  W. Chapman,et al.  Staging recurrent metastatic colorectal carcinoma with PET. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  V. Lowe,et al.  Positron emission tomography in lung cancer. , 1998, The Annals of thoracic surgery.

[3]  P. Makler Decision tree sensitivity analysis for cost-effectiveness of FDG-PET in the staging and management of non-small-cell lung carcinoma. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[4]  B. Siegel,et al.  Utility of FDG-PET for investigating unexplained plasma CEA elevation in patients with colorectal cancer. , 1998, Annals of surgery.

[5]  O. Sabri,et al.  Short comunication Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases , 2022 .

[6]  R. Wahl,et al.  Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-D-glucose: pilot animal and human studies. , 1991, The Journal of urology.

[7]  S. Reske,et al.  18-F-fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatous bone marrow. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  M. Singer,et al.  Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. , 1998, AJNR. American journal of neuroradiology.

[9]  W. Chapman,et al.  Positron emission tomography to stage suspected metastatic colorectal carcinoma to the liver. , 1996, American journal of surgery.

[10]  K. Geisinger,et al.  A comparative diagnostic study of head and neck nodal metastases using positron emission tomography , 1995, The Laryngoscope.

[11]  David J. Yang,et al.  Detecting recurrent or residual lung cancer with FDG-PET. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  R A Brooks,et al.  Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography , 1982, Neurology.

[13]  B. Långström,et al.  Positron Emission Tomography in the Diagnosis and Staging of Urinary Bladder Cancer , 1996, Acta radiologica.

[14]  V. Lowe,et al.  Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucose. , 1994, Radiology.

[15]  K. Hubner,et al.  Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). , 1993, Gynecologic oncology.

[16]  J. V. van Horn,et al.  Fluorine-18-fluorodeoxyglucose assessment of glucose metabolism in bone tumors. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  O. Schober,et al.  Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans , 1998, Langenbeck's Archives of Surgery.

[18]  G. Hör,et al.  Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer , 1998, European Journal of Nuclear Medicine.

[19]  Otto Muzik,et al.  Imaging proliferation in vivo with [F-18]FLT and positron emission tomography , 1998, Nature Medicine.

[20]  S. Hauptmann,et al.  F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer. , 1994, Radiology.

[21]  M. Kaminski,et al.  Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose: correlation with CT. , 1994, Radiology.

[22]  J. Humm,et al.  Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. , 1998, Cancer research.

[23]  J E Mortimer,et al.  Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  M P Sandler,et al.  Evaluation of benign vs malignant hepatic lesions with positron emission tomography. , 1998, Archives of surgery.

[25]  B J McNeil,et al.  CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. , 1991, Radiology.

[26]  H. Minn,et al.  Increased glucose metabolism in untreated non-Hodgkin's lymphoma: a study with positron emission tomography and fluorine-18-fluorodeoxyglucose. , 1995, Blood.

[27]  J Bogaert,et al.  Lymph node staging in non-small-cell lung cancer with FDG-PET scan: a prospective study on 690 lymph node stations from 68 patients. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  L. Adler,et al.  Axillary lymph node metastases: screening with [F-18]2-deoxy-2-fluoro-D-glucose (FDG) PET. , 1997, Radiology.

[29]  D. Slosman,et al.  The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. , 1996, Acta oto-laryngologica.

[30]  B. Karlan,et al.  Whole-body positron emission tomography with 2-[18F]-fluoro-2-deoxy-D-glucose can detect recurrent ovarian carcinoma. , 1993, Gynecologic oncology.

[31]  T K Lewellen,et al.  Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. , 1996, International journal of radiation oncology, biology, physics.

[32]  Y Yonekura,et al.  In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  L. Mortelmans,et al.  Clinical value of whole‐body positron emission tomography with [18F]fluorodeoxyglucose in recurrent colorectal cancer , 1994, The British journal of surgery.

[34]  A. Dowlati,et al.  Evaluation of the solitary pulmonary nodule by positron emission tomography imaging. , 1996, The European respiratory journal.

[35]  W. Vaalburg,et al.  Positron emission tomography for staging of oesophageal and gastroesophageal malignancy. , 1998, British Journal of Cancer.

[36]  J Kotzerke,et al.  Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) PET in nodal staging. , 1997, Radiology.

[37]  Y. Yonekura,et al.  Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US. , 1995, Radiology.

[38]  M. Wax,et al.  Positron Emission Tomography in the Evaluation of the N0 Neck , 1998, The Laryngoscope.

[39]  R. Lufkin,et al.  The use of positron emission tomography for early detection of recurrent head and neck squamous cell carcinoma in postradiotherapy patients , 1995, The Laryngoscope.

[40]  M Schwaiger,et al.  Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. , 1996, Journal of the National Cancer Institute.

[41]  S. Reske,et al.  Lymph node staging in non-small cell lung cancer: evaluation by [18F]FDG positron emission tomography (PET). , 1997, Thorax.

[42]  O. Sabri,et al.  FDG PET for detection and therapy control of metastatic germ cell tumor. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[43]  H. Minn,et al.  Detection of residual tumours in postchemotherapy testicular cancer by FDG-PET. , 1998, European journal of cancer.

[44]  A. Buck,et al.  Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-D-glucose. , 1995, Radiology.

[45]  R. Wahl,et al.  Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. , 1998, Radiology.

[46]  J. Moley,et al.  Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. , 1997, Surgery.

[47]  W Vaalburg,et al.  Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[48]  M. Bergström,et al.  Pancreatic neuroendocrine tumors: diagnosis with PET. , 1995, Radiology.

[49]  N. Gupta,et al.  Experience with positron emission tomography (PET) scans in patients with ovarian cancer. , 1994, Gynecologic oncology.

[50]  J Grierson,et al.  Utilization of labeled thymidine in DNA synthesis: studies for PET. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[51]  M Schwaiger,et al.  Reproducibility of metabolic measurements in malignant tumors using FDG PET. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[52]  R. Bares,et al.  Ergebnisse der Positronen- emissionstomographie mit Fluor-18-markierter Fluordesoxyglukose bei Differentialdiagnose und Staging des Pankreaskarzinoms , 2013, Der Radiologe.

[53]  J. Hanke,et al.  Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[54]  M Schwaiger,et al.  Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[55]  G. Glatting,et al.  FDG PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[56]  R L Wahl,et al.  In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[57]  R. Wahl,et al.  Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-D-glucose PET and MR imaging diagnoses. , 1996, Radiology.

[58]  P Schmidlin,et al.  Recurrence of colorectal tumors: PET evaluation. , 1989, Radiology.

[59]  J. D. van der Walt,et al.  Detection of lymphoma in bone marrow by whole-body positron emission tomography. , 1998, Blood.

[60]  D Delbeke,et al.  Prospective investigation of positron emission tomography in lung nodules. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[61]  P. Sharp,et al.  Staging of the axilla in breast cancer: accurate in vivo assessment using positron emission tomography with 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. , 1998, Annals of surgery.

[62]  R. Maciunas,et al.  Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. , 1995, Radiology.

[63]  M Schwaiger,et al.  Positron emission tomography in non-Hodgkin's lymphoma: assessment of chemotherapy with fluorodeoxyglucose. , 1998, Blood.

[64]  M. Greco,et al.  Prospective evaluation of fluorine-18-FDG PET in presurgical staging of the axilla in breast cancer. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[65]  S. Reske,et al.  Die Positronenemissionstomographie des Skelettsystems mit 18FNa : Häufigkeit, Befundmuster und Verteilung benigner Veränderungen , 1998 .

[66]  Susan M. Chang,et al.  18‐fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma , 1997, Cancer.

[67]  R. Wahl,et al.  Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. , 1996, Radiology.

[68]  C. Degueldre,et al.  Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[69]  A. Dowlati,et al.  Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. , 1996, The European respiratory journal.

[70]  R. Coleman,et al.  Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. , 1997, AJR. American journal of roentgenology.

[71]  R Iwata,et al.  Differential diagnosis of lung tumor with positron emission tomography: a prospective study. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[72]  J. Reed,et al.  Mediastinal staging of non-small-cell lung cancer with positron emission tomography. , 1995, American journal of respiratory and critical care medicine.

[73]  M. Weber,et al.  Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by the src oncogene. , 1987, Molecular and cellular biology.

[74]  R. Hustinx,et al.  18FDG‐PET for the assessment of primary head and neck tumors: Clinical, computed tomography, and histopathological correlation in 38 patients , 1998, The Laryngoscope.

[75]  J L Roodenburg,et al.  Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[76]  M. Fulham,et al.  Positron emission tomography in the detection and management of metastatic melanoma , 1996, Melanoma research.

[77]  R. Lufkin,et al.  Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: quantitation with PET. , 1993, Radiology.

[78]  R. Wahl,et al.  Prospective evaluation of 2-[18F]-2-deoxy-D-glucose positron emission tomography in staging of regional lymph nodes in patients with cutaneous malignant melanoma. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[79]  G. Hör,et al.  Primary staging and follow‐up of high risk melanoma patients with whole‐body 18F‐fluorodeoxyglucose positron emission tomography , 1998, Cancer.

[80]  H. Friess,et al.  Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-D-glucose positron emission tomography. , 1995, Gut.

[81]  K. Usadel,et al.  Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours , 1997, European Journal of Nuclear Medicine.

[82]  G. V. von Schulthess,et al.  Cost-effectiveness of whole-body PET imaging in non-small cell lung cancer and malignant melanoma. , 1998, Academic radiology.

[83]  M. Bergström,et al.  Positron emission tomography with 5-hydroxytryprophan in neuroendocrine tumors. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[84]  J M Hoffman,et al.  Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[85]  S. Alyafei,et al.  Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[86]  E. Gunel,et al.  Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET. , 1996, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[87]  R. Gupta,et al.  Positron emission tomography plus serum TA90 immune complex assay for detection of occult metastatic melanoma. , 1998, Journal of the American College of Surgeons.

[88]  P. Courtheoux,et al.  The in vivo metabolic pattern of low-grade brain gliomas: a positron emission tomographic study using 18F-fluorodeoxyglucose and 11C-L-methylmethionine. , 1997, Neurosurgery.

[89]  R. Coleman,et al.  Local recurrence of rectal cancer:evaluation with F-18 fluorodeoxyglucose PET imaging , 1997, Abdominal Imaging.

[90]  P. Valk,et al.  Analytical decision model for the cost-effective management of solitary pulmonary nodules. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[91]  N. Shinoura,et al.  Brain tumors: detection with C-11 choline PET. , 1997, Radiology.

[92]  M. Mandelkern,et al.  Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. , 1996, American journal of respiratory and critical care medicine.

[93]  M. Phelps,et al.  Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[94]  R. Coleman,et al.  Diagnosis of pancreatic carcinoma: role of FDG PET. , 1998, AJR. American journal of roentgenology.

[95]  M. Birnbaum,et al.  Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. , 1987, Science.

[96]  H. Baddeley,et al.  A prospective study of PET-FDG imaging for the assessment of head and neck squamous cell carcinoma. , 1997, Clinical otolaryngology and allied sciences.

[97]  R. Rubens,et al.  Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[98]  M. Schwaiger,et al.  [Metabolic characterization of ovarian tumors with positron-emission tomography and F-18 fluorodeoxyglucose]. , 1997, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[99]  H. Friess,et al.  2-(fluorine-18)-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. , 1995, Radiology.

[100]  L. Case,et al.  Can positron emission tomography distinguish tumor recurrence from irradiation sequelae in patients treated for larynx cancer? , 1997, The cancer journal from Scientific American.

[101]  E H Moore,et al.  Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. , 1992, Radiology.

[102]  A. Syrota,et al.  [11C]L-methionine uptake in gliomas. , 1989, Neurosurgery.

[103]  A. Thiel,et al.  11C-methionine PET for differential diagnosis of low-grade gliomas , 1998, Neurology.

[104]  M. A. Smith,et al.  Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. , 1998, The Journal of bone and joint surgery. British volume.

[105]  G. Hutchins,et al.  Positron emission tomography evaluation of residual radiographic abnormalities in postchemotherapy germ cell tumor patients. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[106]  J. Roodenburg,et al.  Detection of unknown occult primary tumors using positron emission tomography , 1998, Cancer.

[107]  H N Wagner,et al.  Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[108]  D. Rubello,et al.  Neuroendocrine Tumor Imaging: Can 18F-Fluorodeoxyglucose Positron Emission Tomography Detect Tumors with Poor Prognosis and Aggressive Behavior? , 1998, World Journal of Surgery.

[109]  M. Fulham,et al.  The role of whole-body positron emission tomography with [18F]fluorodeoxyglucose in identifying operable colorectal cancer metastases to the liver. , 1996, Archives of surgery.

[110]  G. V. von Schulthess,et al.  Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. , 1997, Radiology.

[111]  W. Holder,et al.  Effectiveness of positron emission tomography for the detection of melanoma metastases. , 1998, Annals of surgery.

[112]  R. Wahl,et al.  Uptake of 2-deoxy, 2-(18F) fluoro-D-glucose in bladder cancer: animal localization and initial patient positron emission tomography. , 1991, The Journal of urology.

[113]  R. Foster,et al.  The sentinel node in breast cancer--a multicenter validation study. , 1998, The New England journal of medicine.

[114]  R L Wahl,et al.  Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. , 1993, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[115]  G. Cook,et al.  Computed tomography and positron emission tomography in the pre-operative staging of oesophageal carcinoma. , 1998, Clinical radiology.

[116]  G. V. von Schulthess,et al.  Detection of extrathoracic metastases by positron emission tomography in lung cancer. , 1998, The Annals of thoracic surgery.

[117]  J. Neuerburg,et al.  Klinische Wertigkeit der FDG-PET zur Therapiekontrolle bei malignen Lymphomen – Ergebnisse einer retrospektiven Studie an 72 Patienten , 1999, Nuklearmedizin.

[118]  Peter Bartenstein,et al.  Imaging of lung cancer with fluorine-18 fluorodeoxyglucose: comparison of a dual-head gamma camera in coincidence mode with a full-ring positron emission tomography system , 1999, European Journal of Nuclear Medicine.

[119]  鳥塚 達郎,et al.  Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy , 1995 .

[120]  M. Greco,et al.  Association between [18F]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation , 1998, European Journal of Nuclear Medicine.

[121]  P. Shreve Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease , 1998, European Journal of Nuclear Medicine.

[122]  K Herholz,et al.  Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. , 1993, Journal of neurosurgery.

[123]  D. Rubello,et al.  Potential role of fluorine-18-deoxyglucose (FDG) positron emission tomography (PET) in the staging of primitive and recurrent medullary thyroid carcinoma , 1997, Journal of endocrinological investigation.

[124]  S. Goldman,et al.  Prognostic value positron emission tomography with [18F]fluoro-2-deoxy-D-glucose in the low-grade glioma. , 1996, Neurosurgery.

[125]  F. Jänicke,et al.  Stellenwert der Positronen-Emissions-Tomographie (PET) mit F-18 Fluordeoxyglukose (FDG) in der Diagnostik von Mammatumoren , 1997 .

[126]  M. Goldberg,et al.  Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. , 1995, Radiology.

[127]  M Schwaiger,et al.  The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. , 1998, International journal of radiation oncology, biology, physics.

[128]  R. Lufkin,et al.  Use of positron emission tomography with fluorodeoxyglucose in patients with extracranial head and neck cancers , 1994 .

[129]  R. Wahl,et al.  Preclinical and clinical studies of bone marrow uptake of fluorine-1-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[130]  P. Marsden,et al.  Whole-body 18F-fluorodeoxyglucose positron emission tomography in preoperative evaluation of lung cancer , 1994, The Lancet.

[131]  M J Welch,et al.  Radiolabeled hypoxic cell sensitizers: tracers for assessment of ischemia. , 1987, Life sciences.

[132]  P C Goodman,et al.  Evaluation of primary pulmonary carcinoid tumors using FDG PET. , 1998, AJR. American journal of roentgenology.

[133]  J. Ruhlmann,et al.  Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. , 1997, Thyroid : official journal of the American Thyroid Association.

[134]  J. Sunderland,et al.  Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. , 1996, The Journal of thoracic and cardiovascular surgery.

[135]  K. Någren,et al.  Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[136]  R. Wahl,et al.  Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. , 1994, Radiology.

[137]  G. Marchal,et al.  Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging. , 1995, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[138]  P. Valk,et al.  Cost-effectiveness of PET imaging in clinical oncology. , 1996, Nuclear medicine and biology.

[139]  M. Singer,et al.  Metastatic head and neck cancer: role and usefulness of FDG PET in locating occult primary tumors. , 1999, Radiology.

[140]  L. Strauss,et al.  18F‐labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5‐fluorouracil , 1998, Cancer.

[141]  S. Hansen,et al.  [Detection of cholangiocarcinoma in primary sclerosing cholangitis by positron emission tomography]. , 2000, Ugeskrift for laeger.

[142]  P. Lewis,et al.  Uptake of fluorine-18-fluorodeoxyglucose in sarcoidosis. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[143]  H. Minn,et al.  Head and neck cancer: detection of recurrence with PET and 2-[F-18]fluoro-2-deoxy-D-glucose. , 1995, Radiology.

[144]  P. Valk,et al.  Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. , 1995, The Annals of thoracic surgery.

[145]  H. Lodish,et al.  Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. , 1987, Science.

[146]  R. Wahl,et al.  Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-D-glucose imaging: dual-head coincidence gamma camera versus positron emission tomographic scanner. , 1998, Radiology.

[147]  M Schwaiger,et al.  Comparison of fluorine-18-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.