Incidence of Herbicide Resistance, Seedling Emergence, and Seed Persistence of Smooth Barley (Hordeum glaucum) in South Australia

Smooth barley has emerged as a problematic weed in cereal crops of South Australia. After the recent reports of herbicide resistance and increase in seed dormancy in smooth barley, it was considered important to determine the herbicide resistance status and seedbank behavior of field populations of this weed species. A field survey was undertaken in the Upper North and Eyre Peninsula regions of South Australia in October 2012. Of the 90 smooth barley populations screened for resistance to quizalofop, 15% exhibited some level of resistance and 85% were susceptible. Resistance to acetolactate synthase (ALS)-inhibiting herbicides was low, with only 3 and 12% of populations classified as developing resistance to imazamox + imazapyr and sulfosulfuron, respectively. No multiple resistance patterns were observed; however, two ALS-inhibiting herbicide-resistant populations had sulfonylurea-to-imidazolinone cross-resistance. At the start of the growing season, the majority of smooth barley populations emerged rapidly (median 50% time to emergence [T50] = 8 d). In contrast, some populations of smooth barley displayed an extremely slow emergence pattern, with T50 of > 20 d. No direct linkage between seed dormancy and herbicide resistance was observed. However, two acetyl coenzyme A carboxylase-inhibiting herbicide-resistant populations were highly dormant and exhibited delayed emergence. The majority of smooth barley populations showed low-level or no seedbank persistence, but a few populations persisted for 1 yr. However, some weed populations had up to 20% seedbank persistence from 1 yr to the next. Overall there was a strong negative relationship between smooth barley seedling emergence and the level of seed persistence (R2 = 0.84, P < 0.05). This association indicated that greater seed dormancy could be responsible for extended persistence of the seedbank of this weed species. The study provides valuable insights into the general pattern of herbicide resistance and the behavior of the seedbank of smooth barley populations on South Australian farms. Nomenclature: Imazamox + imazapyr; quizalofop; sulfosulfuron; smooth barley, Hordeum glaucum (Steud.) Tzvelev. Hordeum glaucum ha emergido como una maleza problemática en los cultivos de cereales en el Sur de Australia. Después de reportes recientes de resistencia a herbicidas y el incremento en la dormancia de la semilla en H. glaucum, se consideró importante determinar el estatus de la resistencia a herbicidas y el comportamiento del banco de semillas de poblaciones de campo de esta especie. Se realizó un estudio observacional de campo en las regiones Alta Norte y de la península Eyre en el Sur de Australia, en Octubre 2012. De las 90 poblaciones de H. glaucum evaluadas por resistencia a quizalofop, 14% exhibieron algún nivel de resistencia y 86% fueron susceptibles. La resistencia a herbicidas inhibidores de acetolactate synthase (ALS) fue baja, ya que solamente 3 y 12% de las poblaciones fueron clasificadas como desarrollando resistencia a imazamox + imazapyr y sulfosulfuron, respectivamente. No se observó ningún patrón de resistencia múltiple. Sin embargo, dos poblaciones resistentes a herbicidas inhibidores de ALS tuvieron resistencia cruzada de sulfonylurea a imidazolinone. Al inicio de la temporada de crecimiento, la mayoría de las poblaciones de H. glaucum emergieron rápidamente (mediana del tiempo de 50% de emergencia [T50] = 8 d). En contraste, algunas poblaciones de H. glaucum mostraron un patrón de emergencia extremadamente tardío, con T50 de > 20 d. No se observó ninguna relación directa entre la dormancia de la semilla y la resistencia a herbicidas. Sin embargo, dos poblaciones resistentes a herbicidas inhibidores de acetyl coenzyme A carboxylase tuvieron una alta dormancia y exhibieron un retraso en la emergencia. La mayoría de las poblaciones de H. glaucum mostraron de bajo a ninguna persistencia del banco de semillas, pero algunas poblaciones persistieron por 1 año. Sin embargo, algunas poblaciones tuvieron hasta 20% de persistencia del banco de semillas de un año al otro. En general, hubo una fuerte relación negativa entre la emergencia de plántulas de H. glaucum y el nivel de persistencia de la semillas (R2 = 0.84, P < 0.05). Esta asociación indicó que una mayor dormancia de la semilla podría ser responsable por la persistencia extendida del banco de semillas de esta especie de maleza. Este estudio brinda una observación valiosa sobre el patrón general de resistencia a herbicida y el comportamiento del banco de semillas de poblaciones de H. glaucum en fincas del Sur de Australia.

[1]  S. Powles,et al.  Intensive cropping systems select for greater seed dormancy and increased herbicide resistance levels in Lolium rigidum (annual ryegrass). , 2015, Pest management science.

[2]  C. Preston,et al.  Target-Site Point Mutations Conferring Resistance to ACCase-Inhibiting Herbicides in Smooth Barley (Hordeum glaucum) and Hare Barley (Hordeum leporinum) , 2015, Weed Science.

[3]  C. Preston,et al.  Distribution of herbicide-resistant acetyl-coenzyme A carboxylase alleles in Lolium rigidum across grain cropping areas of South Australia , 2014 .

[4]  A. Culpepper,et al.  Glyphosate Resistance Does Not Affect Palmer Amaranth (Amaranthus palmeri) Seedbank Longevity , 2013, Weed Science.

[5]  Gurjeet Gill,et al.  Seed Dormancy and Seedling Emergence in Ripgut Brome (Bromus diandrus) Populations in Southern Australia , 2013, Weed Science.

[6]  Gurjeet Gill,et al.  Seed Dormancy and Seedling Recruitment in Smooth Barley (Hordeum murinum ssp. glaucum) Populations in Southern Australia , 2012, Weed Science.

[7]  S. Powles,et al.  Identification of resistance to either paraquat or ALS-inhibiting herbicides in two Western Australian Hordeum leporinum biotypes. , 2012, Pest management science.

[8]  S. Warwick,et al.  Basis for Herbicide Resistance in Canadian Populations of Wild Oat (Avena fatua) , 2012, Weed Science.

[9]  John Broster,et al.  Herbicide resistance frequencies in ryegrass (Lolium spp.) and other grass species in Tasmania. , 2012 .

[10]  Michael L. Poole,et al.  Green and Brown Manures in Dryland Wheat Production Systems in Mediterranean-Type Environments , 2012 .

[11]  Stephen B. Powles,et al.  Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems , 2011 .

[12]  W. Price,et al.  Widespread Occurrence of Herbicide-Resistant Italian Ryegrass (Lolium multiflorum) in Northern Idaho and Eastern Washington , 2010, Weed Technology.

[13]  S. Zydenbos,et al.  A survey of southern New South Wales to determine the level of herbicide resistance in brome grass and barley grass populations. , 2010 .

[14]  Pedro E. Gundel,et al.  Dormancy, germination and ageing of Lolium multiflorum seeds following contrasting herbicide selection regimes , 2008 .

[15]  S. Powles,et al.  Weed Science Society of America High Levels of Herbicide Resistance in Rigid Ryegrass ( Lolium rigidum ) in the Wheat Belt of Western Australia , 2008 .

[16]  S. Powles,et al.  Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. , 2007, Pest management science.

[17]  J. Recasens,et al.  Variation in seed germination and early growth between and within acetolactate synthase herbicide resistant and susceptible Lolium rigidum accessions , 2007 .

[18]  Stephen B. Powles,et al.  Management Strategies for Herbicide-resistant Weed Populations in Australian Dryland Crop Production Systems , 2007, Weed Technology.

[19]  C. Preston,et al.  Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum) , 2006, Weed Science.

[20]  Christopher Preston,et al.  Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank , 2006, Weed Science.

[21]  C. Délye,et al.  Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update , 2005, Weed Science.

[22]  Stephen B. Powles,et al.  Ecological fitness of a multiple herbicide‐resistant Lolium rigidum population: dynamics of seed germination and seedling emergence of resistant and susceptible phenotypes , 2005 .

[23]  Imam Hidayat Evolution and spread of paraquat resistant barley grasses (Hordeum glaucum Steud. and H. leporinum Link) / Imam Hidayat. , 2004 .

[24]  J. Dekker,et al.  Differential Seed Germinability in Triazine-Resistant and -Susceptible Giant Foxtail (Setaria faberii) , 2002 .

[25]  H. S. Jacob,et al.  How fast do the seedbanks of five annual cropping weeds deplete in the absence of weed seed input , 2002 .

[26]  C. Preston,et al.  Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum , 2002, Heredity.

[27]  R. Llewellyn,et al.  High Levels of Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) in the Wheat Belt of Western Australia1 , 2001, Weed Technology.

[28]  C. Preston,et al.  Mechanisms of resistance to acetyl‐coenzyme A carboxylase‐inhibiting herbicides in a Hordeum leporinum population , 2000 .

[29]  F. Forcella,et al.  Implications of weed seedbank dynamics to weed management , 1997, Weed Science.

[30]  I. Heap International survey of herbicide-resistant weeds , 1997 .

[31]  R. Cousens,et al.  Germination, Growth, and Development of Herbicide Resistant and Susceptible Populations of Rigid Ryegrass (Lolium rigidum) , 1996, Weed Science.

[32]  D. D. Buhler,et al.  Effect of Date of Preplant Tillage and Planting on Weed Populations and Mechanical Weed Control in Soybean (Glycine max) , 1996, Weed Science.

[33]  J. Pratley Long term investigations of the effect of tillage practices on crop production at Wagga Wagga, New South Wales , 1995 .

[34]  M. L. Roush,et al.  Selection pressures for diclofop-methyl resistance and germination time of Italian ryegrass , 1994 .

[35]  B. Maxwell,et al.  Populations genetics and the evolution of herbicide resistance in weeds , 1994 .

[36]  C. Preston,et al.  On the Mechanism of Resistance to Paraquat in Hordeum glaucum and H. leporinum: Delayed Inhibition of Photosynthetic O(2) Evolution after Paraquat Application. , 1992, Plant physiology.

[37]  S. Powles,et al.  ERADICATION OF PARAQUAT-RESISTANT HORDEUM-GLAUCUM STEUD - BY PREVENTION OF SEED PRODUCTION FOR 3 YEARS , 1992 .

[38]  S. Powles Appearance of a biotype of the weed, Hordeum glaucum Steud., resistant to the herbicide paraquat , 1986 .

[39]  A. Popay Germination of Seeds of Five Annual Species of Barley Grass , 1981 .

[40]  P. Cocks,et al.  The Hordeum murinum Complex in Australia , 1976 .

[41]  J. Zadoks A decimal code for the growth stages of cereals , 1974 .

[42]  C. Donald,et al.  The germination and establishment of two annual pasture grasses (Hordeum leporinum Link and Lolium rigidum Gaud.) , 1973 .

[43]  A. Davison The Ecology of Hordeum Murinum L.: II. The Ruderal Habit , 1971 .

[44]  Df Smith The growth of barley grass (Hordeum leporinum) in annual pasture. 1. Germination and establishment in comparison with other annual pasture species , 1968 .

[45]  G. Harris The periodicity of germination in some grass species , 1961 .