Counting Problems in Parameterized Complexity

This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way.

[1]  Bojan Mohar,et al.  A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface , 1999, SIAM J. Discret. Math..

[2]  Leslie Ann Goldberg,et al.  The Complexity of Approximately Counting Tree Homomorphisms , 2013, TOCT.

[3]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[4]  Radu Curticapean,et al.  Counting edge-injective homomorphisms and matchings on restricted graph classes , 2017, STACS.

[5]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[6]  Dániel Marx,et al.  Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus , 2016, SODA.

[7]  Johannes Schmitt,et al.  Counting Induced Subgraphs: A Topological Approach to #W[1]-hardness , 2018, Algorithmica.

[8]  Andreas Björklund,et al.  Counting Thin Subgraphs via Packings Faster than Meet-in-the-Middle Time , 2013, SODA.

[9]  Vijay V. Vazirani,et al.  NC Algorithms for Computing the Number of Perfect Matchings in K_3,3-Free Graphs and Related Problems , 1989, Inf. Comput..

[10]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[11]  Marc Roth,et al.  Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices , 2017, ESA.

[12]  Dániel Marx,et al.  Complexity of Counting Subgraphs: Only the Boundedness of the Vertex-Cover Number Counts , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[13]  Peter Rossmanith,et al.  Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.

[14]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[15]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[16]  Johann A. Makowsky,et al.  Connection Matrices and the Definability of Graph Parameters , 2013, Log. Methods Comput. Sci..

[17]  Hubie Chen,et al.  Counting Answers to Existential Positive Queries: A Complexity Classification , 2016, PODS.

[18]  Alex D. Scott,et al.  Linear-programming design and analysis of fast algorithms for Max 2-CSP , 2006, Discret. Optim..

[19]  Andrzej Lingas,et al.  Counting and Detecting Small Subgraphs via Equations , 2013, SIAM J. Discret. Math..

[20]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[21]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[22]  Dániel Marx,et al.  Exponential Time Complexity of the Permanent and the Tutte Polynomial , 2010, TALG.

[23]  L. Lovász Operations with structures , 1967 .

[24]  Thore Husfeldt,et al.  Invitation to Algorithmic Uses of Inclusion-Exclusion , 2011, ICALP.

[25]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[26]  Marc Roth,et al.  Parameterized Counting of Trees, Forests and Matroid Bases , 2016, CSR.

[27]  Thomas Thierauf,et al.  Counting the Number of Perfect Matchings in K5-Free Graphs , 2014, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[28]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[29]  Xi Chen,et al.  Complexity of Counting CSP with Complex Weights , 2011, J. ACM.

[30]  Markus Frick,et al.  Generalized Model-Checking over Locally Tree-Decomposable Classes , 2002, STACS.

[31]  Radu Curticapean,et al.  A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank , 2017, SODA.

[32]  Jörg Flum,et al.  The parameterized complexity of counting problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[33]  Stefan Kratsch,et al.  Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.

[34]  Andreas Björklund Determinant Sums for Undirected Hamiltonicity , 2014, SIAM J. Comput..

[35]  Mark Jerrum,et al.  Some Hard Families of Parameterized Counting Problems , 2013, ACM Trans. Comput. Theory.

[36]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[37]  Mark Jerrum,et al.  The parameterised complexity of counting connected subgraphs and graph motifs , 2013, J. Comput. Syst. Sci..

[38]  Kitty Meeks,et al.  The challenges of unbounded treewidth in parameterised subgraph counting problems , 2014, Discret. Appl. Math..

[39]  David G. Horobin Can You Beat That , 1999 .

[40]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[41]  Dániel Marx Can you beat treewidth? , 2007, FOCS.

[42]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[43]  Markus Bläser,et al.  Weighted Counting of k-Matchings Is #W[1]-Hard , 2012, IPEC.

[44]  Yijia Chen,et al.  Understanding the Complexity of Induced Subgraph Isomorphisms , 2008, ICALP.

[45]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[46]  Leslie Ann Goldberg,et al.  Approximating the Tutte polynomial of a binary matroid and other related combinatorial polynomials , 2010, J. Comput. Syst. Sci..

[47]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[48]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[49]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[50]  Peng Zhang,et al.  Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..

[51]  Ryan Williams,et al.  Finding, Minimizing, and Counting Weighted Subgraphs , 2013, SIAM J. Comput..

[52]  Erik D. Demaine,et al.  Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors , 2005, Algorithmica.

[53]  Catherine McCartin Parameterized counting problems , 2006, Ann. Pure Appl. Log..

[54]  Venkatesh Raman,et al.  Approximation Algorithms for Some Parameterized Counting Problems , 2002, ISAAC.

[55]  Reinhard Diestel,et al.  Graph Theory, 4th Edition , 2012, Graduate texts in mathematics.

[56]  Radu Curticapean Counting perfect matchings in graphs that exclude a single-crossing minor , 2014, ArXiv.

[57]  Mingji Xia,et al.  Parameterizing the Permanent: Genus, Apices, Minors, Evaluation Mod 2k , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[58]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[59]  Radu Curticapean,et al.  Counting Matchings of Size k Is W[1]-Hard , 2013, ICALP.

[60]  Martin E. Dyer,et al.  The complexity of approximating conservative counting CSPs , 2012, 1208.1783.

[61]  Noga Alon,et al.  Balanced families of perfect hash functions and their applications , 2007, TALG.

[62]  Martin E. Dyer,et al.  On Counting Homomorphisms to Directed Acyclic Graphs , 2006, ICALP.

[63]  Martin E. Dyer,et al.  An Effective Dichotomy for the Counting Constraint Satisfaction Problem , 2010, SIAM J. Comput..

[64]  Peter Jonsson,et al.  The complexity of counting homomorphisms seen from the other side , 2004, Theor. Comput. Sci..

[65]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[66]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[67]  Johann A. Makowsky,et al.  Computing Graph Polynomials on Graphs of Bounded Clique-Width , 2006, WG.

[68]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[69]  László Lovász,et al.  The rank of connection matrices and the dimension of graph algebras , 2004, Eur. J. Comb..

[70]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[71]  Marc Roth,et al.  Fine-Grained Dichotomies for the Tutte Plane and Boolean #CSP , 2016, IPEC.

[72]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[73]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[74]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[75]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[76]  Mark Jerrum,et al.  The parameterised complexity of counting even and odd induced subgraphs , 2014, Comb..

[77]  C. Stegbauer,et al.  Granovetter (1973): The Strength of Weak Ties , 2018, Schlüsselwerke der Netzwerkforschung.

[78]  Charles H. C. Little,et al.  An Extension of kasteleyn's method of enumerating the 1-factors of planar graphs , 1974 .

[79]  Noga Alon,et al.  Biomolecular network motif counting and discovery by color coding , 2008, ISMB.

[80]  Jin-Yi Cai,et al.  Computational Complexity of Holant Problems , 2011, SIAM J. Comput..

[81]  Paul D. Seymour,et al.  Excluding a graph with one crossing , 1991, Graph Structure Theory.

[82]  Michael Luby,et al.  Approximating the Permanent of Graphs with Large Factors , 1992, Theor. Comput. Sci..

[83]  Marc Thurley,et al.  Kernelizations for Parameterized Counting Problems , 2007, TAMC.

[84]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[85]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..

[86]  Noga Alon,et al.  Balanced Hashing, Color Coding and Approximate Counting , 2009, IWPEC.

[87]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[88]  Dániel Marx,et al.  Homomorphisms are a good basis for counting small subgraphs , 2017, STOC.

[89]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[90]  Stefan Kratsch,et al.  Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth , 2013, Inf. Comput..

[91]  Andrei A. Bulatov The Complexity of the Counting Constraint Satisfaction Problem , 2008, ICALP.

[92]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[93]  Svatopluk Poljak,et al.  On the complexity of the subgraph problem , 1985 .