Portfolio diversification based on stochastic dominance under incomplete probability information

Abstract Identifying efficient portfolio diversification strategies subject to stochastic dominance (SD) criteria usually assumes that the state-space of future asset returns can be captured by a fixed sample of equally probable historical returns. This paper relaxes this assumption by developing SD criteria under incomplete information on state probabilities. Specifically, we identify portfolios that dominate a given benchmark for any state probabilities in a given set. The proposed approach is applied to analyze if industrial diversification can be utilized to outperform the market portfolio. The results from this application demonstrate that the use of set-valued state probabilities can help to improve out-of-sample performance of SD-based portfolio optimization.

[1]  Herbert Moskowitz,et al.  Decision Analysis with Incomplete Utility and Probability Information , 1993, Oper. Res..

[2]  Walter J. Gutjahr,et al.  Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion , 2015, Eur. J. Oper. Res..

[3]  Thierry Post,et al.  Empirical Tests for Stochastic Dominance Efficiency , 2003 .

[4]  Olivier Scaillet,et al.  Testing for Stochastic Dominance Efficiency , 2006 .

[5]  Laureano F. Escudero,et al.  On risk management of a two-stage stochastic mixed 0-1 model for the closed-loop supply chain design problem , 2019, Eur. J. Oper. Res..

[6]  Darinka Dentcheva,et al.  Robust stochastic dominance and its application to risk-averse optimization , 2010, Math. Program..

[7]  Sebastián Lozano,et al.  Data envelopment analysis of mutual funds based on second-order stochastic dominance , 2008, Eur. J. Oper. Res..

[8]  T. Post,et al.  Higher-Degree Stochastic Dominance Optimality and Efficiency , 2017, Eur. J. Oper. Res..

[9]  Mark Grinblatt,et al.  Do Industries Explain Momentum , 1999 .

[10]  Thierry Post,et al.  Portfolio Analysis Using Stochastic Dominance, Relative Entropy, and Empirical Likelihood , 2017, Manag. Sci..

[11]  H. Levy Stochastic Dominance: Investment Decision Making under Uncertainty , 2010 .

[12]  Wing-Keung Wong,et al.  Gains from diversification on convex combinations: A majorization and stochastic dominance approach , 2010, Eur. J. Oper. Res..

[13]  Haim Levy,et al.  Relative Effectiveness of Efficiency Criteria for Portfolio Selection , 1970, Journal of Financial and Quantitative Analysis.

[14]  Rachel J. Huang,et al.  Generalized Almost Stochastic Dominance , 2014 .

[15]  T. Post Empirical Tests for Stochastic Dominance Optimality , 2015 .

[16]  Markku Kallio,et al.  Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests , 2018, Eur. J. Oper. Res..

[17]  Ronny Aboudi,et al.  Efficient Algorithms for Stochastic Dominance Tests Based on Financial Market Data , 1994 .

[18]  Francesco Cesarone,et al.  Innovative Applications of O.R. On exact and approximate stochastic dominance strategies for portfolio selection , 2018 .

[19]  Ahti Salo,et al.  Contingent Portfolio Programming for the Management of Risky Projects , 2005, Oper. Res..

[20]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[21]  Rachel J. Huang,et al.  Revisiting Almost Second-Degree Stochastic Dominance , 2013, Manag. Sci..

[22]  Jitka Dupacová,et al.  Robustness of optimal portfolios under risk and stochastic dominance constraints , 2014, Eur. J. Oper. Res..

[23]  A. D. Pearman,et al.  Stochastic dominance with linear partial information , 1986 .

[24]  Timo Kuosmanen,et al.  Efficient Diversification According to Stochastic Dominance Criteria , 2004, Manag. Sci..

[25]  Moshe Levy,et al.  Stocks for the log-run and constant relative risk aversion preferences , 2019, Eur. J. Oper. Res..

[26]  Yanping Jiang,et al.  Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance , 2018, Eur. J. Oper. Res..

[27]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[28]  Ahti Salo,et al.  Scenario-based portfolio model for building robust and proactive strategies , 2018, Eur. J. Oper. Res..

[29]  Ahti Salo,et al.  Scenario-based portfolio selection of investment projects with incomplete probability and utility information , 2012, Eur. J. Oper. Res..

[30]  S. Karabati,et al.  Portfolio Construction Based on Stochastic Dominance and Empirical Likelihood , 2017, Journal of Econometrics.

[31]  Markku Kallio,et al.  Advancements in stochastic dominance efficiency tests , 2019, Eur. J. Oper. Res..

[32]  Thierry Post,et al.  Testing for the Stochastic Dominance Efficiency of a Given Portfolio , 2012 .

[33]  Martin Weber,et al.  Stochastic dominance with incomplete information on probabilities , 1989 .

[34]  Thierry Post,et al.  General linear formulations of stochastic dominance criteria , 2013, Eur. J. Oper. Res..

[35]  Thierry Post,et al.  Portfolio Choice Based on Third-Degree Stochastic Dominance , 2015 .

[36]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[37]  Iñaki R. Longarela A Characterization of the SSD-Efficient Frontier of Portfolio Weights by Means of a Set of Mixed-Integer Linear Constraints , 2016, Manag. Sci..

[38]  Rachel J. Huang,et al.  Operational asymptotic stochastic dominance , 2020, Eur. J. Oper. Res..

[39]  D. Bunn,et al.  Investment Propensities under Carbon Policy Uncertainty , 2011 .

[40]  S. Yitzhaki,et al.  Marginal conditional stochastic dominance , 1994 .

[41]  Jens Carsten Jackwerth,et al.  Improved Portfolio Choice Using Second Order Stochastic Dominance , 2013 .

[42]  C. Starmer Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk , 2000 .

[43]  H. Levy,et al.  Efficiency analysis of choices involving risk , 1969 .

[44]  Wing-Keung Wong,et al.  Stochastic dominance via quantile regression with applications to investigate arbitrage opportunity and market efficiency , 2017, Eur. J. Oper. Res..

[45]  Wing-Keung Wong,et al.  Stochastic dominance and mean-variance measures of profit and loss for business planning and investment , 2007, Eur. J. Oper. Res..

[46]  Russell Davidson,et al.  Testing for Restricted Stochastic Dominance: Some Further Results , 2009, Review of Economic Analysis.