Understanding and Detecting Supporting Arguments of Diverse Types

We investigate the problem of sentence-level supporting argument detection from relevant documents for user-specified claims. A dataset containing claims and associated citation articles is collected from online debate website this http URL. We then manually label sentence-level supporting arguments from the documents along with their types as study, factual, opinion, or reasoning. We further characterize arguments of different types, and explore whether leveraging type information can facilitate the supporting arguments detection task. Experimental results show that LambdaMART (Burges, 2010) ranker that uses features informed by argument types yields better performance than the same ranker trained without type information.

[1]  Yi Chang,et al.  Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.

[2]  Marie-Francine Moens,et al.  Automatic detection of arguments in legal texts , 2007, ICAIL.

[3]  Amy Beth Warriner,et al.  Concreteness ratings for 40 thousand generally known English word lemmas , 2014, Behavior research methods.

[4]  Livio Robaldo,et al.  The Penn Discourse Treebank 2.0 Annotation Manual , 2007 .

[5]  Claire Cardie,et al.  Identifying Appropriate Support for Propositions in Online User Comments , 2014, ArgMining@ACL.

[6]  Amy Beth Warriner,et al.  Norms of valence, arousal, and dominance for 13,915 English lemmas , 2013, Behavior Research Methods.

[7]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[8]  Marie-Francine Moens,et al.  Argumentation mining , 2011, Artificial Intelligence and Law.

[9]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[10]  Iryna Gurevych,et al.  Exploiting Debate Portals for Semi-Supervised Argumentation Mining in User-Generated Web Discourse , 2015, EMNLP.

[11]  Matthias Hagen,et al.  A News Editorial Corpus for Mining Argumentation Strategies , 2016, COLING.

[12]  Diane J. Litman,et al.  Context-aware Argumentative Relation Mining , 2016, ACL.

[13]  Fiona Browne,et al.  Applying Kernel Methods to Argumentation Mining , 2012, FLAIRS.

[14]  Philip J. Stone,et al.  Extracting Information. (Book Reviews: The General Inquirer. A Computer Approach to Content Analysis) , 1967 .

[15]  Mitesh M. Khapra,et al.  Show Me Your Evidence - an Automatic Method for Context Dependent Evidence Detection , 2015, EMNLP.

[16]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[17]  Chin-Yew Lin,et al.  ROUGE: A Package for Automatic Evaluation of Summaries , 2004, ACL 2004.

[18]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[19]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[20]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[21]  Owen Rambow,et al.  Identifying Justifications in Written Dialogs by Classifying Text as Argumentative , 2011, Int. J. Semantic Comput..

[22]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[23]  Richard D. Rieke,et al.  Argumentation and critical decision making , 1975 .