High resolution imaging polarimetry of HL Tau and magnetic field structure

We present high quality near infrared imaging polarimetry of HL Tau at 0.4 to 0.6 arcsec resolution, obtained with Subaru/CIAO and UKIRT/IRCAM. 3-D Monte Carlo modelling with aligned oblate grains is used to probe the structure of the circumstellar envelope and the magnetic field, as well as the dust properties. At J band the source shows a centrosymmetric pattern dominated by scattered light. In the H and K bands the central source becomes visible and its polarisation appears to be dominated by dichroic extinction, with a position angle inclined by � 40 ◦ to the disc axis. The polarisation pattern of the environs on scales up to 200 AU is consistent with the same dichroic extinction signature superimposed on the centrosymmetric scattering pattern. These data can be modelled with a magnetic field which is twisted on scales from tens to hundreds of AU, or alternatively by a field which is globally misaligned with the disc axis. A unique solution to the field structure will require spatially resolved circular polarisation data. The best fit Monte Carlo model indicates a shallow near infrared extinction law. When combined with the observed high polarisation and non-negligible albedo these constraints can be fitted with a grain model involving dirty water ice mantles in which the largest particles have radii slightly in excess of 1 µm. The best fit model has an envelope structure which is slightly flattened on scales up to several hundred AU. Both lobes of the bipolar outflow cavity contain a substantial optical depth of dust (not just within the cavity walls). Curved, approximately parabolic, cavity walls fit the data better than a conical cavity. The small inner accretion disc observed at millimetre wavelengths is not seen at this spatial resolution.

[1]  P. Ho,et al.  VLA Imaging of a Possible Circumstellar Disk around HL Tauri , 1992 .

[2]  L. Hartmann,et al.  High-Resolution, Wide-Field Imaging of the HL Tauri Environment in 13CO (1-0) , 2000 .

[3]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[4]  R. Ulrich An infall model for the T Tauri phenomenon , 1976 .

[5]  Munetaka Ueno,et al.  Infrared Polarization Images of Star-forming Regions. I. The Ubiquity of Bipolar Structure , 1991 .

[6]  S. Wolf,et al.  The Circumstellar Disk of the Butterfly Star in Taurus , 2003, astro-ph/0301335.

[7]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[8]  K. Sellgren,et al.  The near-infrared continuum emission of visual reflection nebulae , 1984 .

[9]  L. Hartmann,et al.  A Young Star near the Hydrogen-burning Limit , 1998 .

[10]  C. Masson,et al.  Small-Scale Structure of the Circumstellar Gas of HL Tauri and R Monocerotis , 1986 .

[11]  Circular polarization by scattering from spheroidal dust grains , 2000 .

[12]  S. Beckwith,et al.  Vertical Disk Structure in HL Tauri , 1995 .

[13]  Joel H. Kastner,et al.  In Search of HL Tauri , 1995 .

[14]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[15]  John E. Krist,et al.  WFPC2 Imaging of the Circumstellar Nebulosity of HL Tauri , 1995 .

[16]  M. Tamura,et al.  Near-Infrared Spectropolarimetry of Three Prototype Low-Mass Young Stellar Objects in the Taurus Dark Cloud , 1999 .

[17]  A Model for the Scattered Light Contribution and Polarization of the Diffuse Hα Galactic Background , 1999, astro-ph/9905289.

[18]  P. Barber Absorption and scattering of light by small particles , 1984 .

[19]  Takuya Yamashita,et al.  IMAGING POLARIMETRY OF HL TAURI AND GG TAURI : A GEOMETRICALLY THIN DISK AROUND GG TAURI , 1994 .

[20]  M. Cohen Infrared Observations of Young Stars—VI A 2- TO 4-Micron Search for Molecular Features , 1975 .

[21]  L. Mundy,et al.  Imaging the HL Tauri Disk at λ = 2.7 Millimeters with the BIMA Array , 1996 .

[22]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[23]  F. Allard,et al.  Infrared Spectroscopy of Substellar Objects in Orion , 2001, astro-ph/0105154.

[24]  P. Ho,et al.  Subarcsecond VLA Maps of the Disk and the Jet in HL Tauri , 1994 .

[25]  D. Whittet,et al.  Dust in the Galactic Environment , 2018 .

[26]  C. Lada,et al.  Near-Infrared Spectra and the Evolutionary Status of Young Stellar Objects: Results of a 1.1-2.4 (??) Survey , 1996 .

[27]  J. Hough,et al.  1 Millimeter Polarimetry of Young Stellar Objects: Low-Mass Protostars and T Tauri Stars , 1995 .

[28]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[29]  M. Hayashi,et al.  A dynamically accreting gas disk around HL Tauri , 1993 .

[30]  P. Roche,et al.  Imaging polarimetry of class I young stellar objects , 1998 .

[31]  Wilfred H. Sorrell,et al.  The 2175-A feature from irradiated graphitic particles , 1990 .

[32]  Charles J. Lada,et al.  The disks of T Tauri stars with flat infrared spectra , 1987 .

[33]  S. Beckwith,et al.  The molecular structure around HL Tauri , 1991 .

[34]  Saeko S. Hayashi,et al.  Coronagraph imager with adaptive optics (CIAO): description and first results , 2000, Astronomical Telescopes and Instrumentation.

[35]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[36]  Zhi-Yun Li,et al.  Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking , 2003, astro-ph/0311377.

[37]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[38]  P. Roche,et al.  Butterfly star in Taurus: Structures of young stellar objects , 1997 .

[39]  J. Pollack,et al.  Composition and radiative properties of grains in molecular clouds and accretion disks , 1994 .

[40]  T. Henning,et al.  Self-consistent Model of the Dusty Torus around HL Tauri , 1999 .

[41]  M. G. Hoare,et al.  Star formation at high angular resolution , 2004, astro-ph/0411500.

[42]  R. White,et al.  Bipolar reflection nebulae : Monte Carlo simulations. , 1984 .

[43]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[44]  Laird M. Close,et al.  Adaptive Optics 0.″2 Resolution Infrared Images of HL Tauri: Direct Images of an Active Accretion Disk around a Protostar , 1997 .

[45]  D. Wilner,et al.  Subarcsecond VLA Observations of HL Tauri: Imaging the Circumstellar Disk , 1996 .

[46]  F. Ménard,et al.  On the interpretation of polarization maps of young stellar objects , 1988 .

[47]  J. Hough,et al.  Linear and Circular Imaging Polarimetry of the Chamaeleon Infrared Nebula , 1996 .

[48]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[49]  A. Chrysostomou,et al.  A new imaging infrared polarimeter , 1994 .

[50]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[51]  L. Hartmann,et al.  Model scattering envelopes of young stellar objects. II - Infalling envelopes , 1993 .

[52]  M. Wolff,et al.  Scattering and Absorption by Aligned Grains in Circumstellar Environments , 2002 .

[53]  David Koerner,et al.  HUBBLE SPACE TELESCOPE/NICMOS Imaging of Disks and Envelopes around Very Young Stars , 1999, astro-ph/9902101.

[54]  B. Whitney,et al.  Near-Infrared Imaging Polarimetry of Embedded Young Stars in the Taurus-Auriga Molecular Cloud , 1997 .

[55]  Christopher D. Koresko,et al.  Tomographic imaging of HL Tauri , 1989 .

[56]  B. Draine Tabulated optical properties of graphite and silicate grains , 1985 .