Spatial Laplace transform for complex wavenumber recovery and its application to the analysis of attenuation in acoustic systems

We present a method for the recovery of complex wavenumber information via spatial Laplace transforms of spatiotemporal wave propagation measurements. The method aids in the analysis of acoustic attenuation phenomena and is applied in three different scenarios: (i) Lamb-like modes in air-saturated porous materials in the low kHz regime, where the method enables the recovery of viscoelastic parameters; (ii) Lamb modes in a Duralumin plate in the MHz regime, where the method demonstrates the effect of leakage on the splitting of the forward S1 and backward S2 modes around the Zero-Group Velocity point; and (iii) surface acoustic waves in a two-dimensional microscale granular crystal adhered to a substrate near 100 MHz, where the method reveals the complex wavenumbers for an out-of-plane translational and two in-plane translational-rotational resonances. This method provides physical insight into each system and serves as a unique tool for analyzing spatiotemporal measurements of propagating waves.

[1]  Iterative high-resolution wavenumber inversion applied to broadband acoustic data , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  A. Maznev,et al.  Complex Contact-Based Dynamics of Microsphere Monolayers Revealed by Resonant Attenuation of Surface Acoustic Waves. , 2015, Physical review letters.

[3]  C. Prada,et al.  Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates , 2005 .

[4]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[5]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[6]  A stable method to model the acoustic response of multilayered structures , 2013 .

[7]  Jeffrey K. Eliason,et al.  Interaction of a contact resonance of microspheres with surface acoustic waves. , 2013, Physical review letters.

[8]  A. Maznev,et al.  Dynamics of a monolayer of microspheres on an elastic substrate , 2015, 1506.08445.

[9]  Jean-Gabriel Minonzio,et al.  Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates. , 2011, The Journal of the Acoustical Society of America.

[10]  Jevgenija Prisutova,et al.  A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide. , 2014, The Journal of the Acoustical Society of America.

[11]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[12]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[13]  Rolf Lammering,et al.  Accurate determination of dispersion curves of guided waves in plates by applying the matrix pencil method to laser vibrometer measurement data , 2013 .

[14]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[15]  S. Foti Small-strain stiffness and damping ratio of Pisa clay from surface wave tests , 2003 .

[16]  Achim Wixforth,et al.  Surface acoustic wave mediated coupling of free-space radiation into surface plasmon polaritons on plain metal films , 2010 .

[17]  C. Glorieux,et al.  Guided elastic waves in porous materials saturated by air under Lamb conditions , 2005 .

[18]  E. C. Shang,et al.  Waveguide characterization and source localization in shallow water waveguides using the Prony method , 1988 .

[19]  Luc Jaouen,et al.  Elastic and damping characterizations of acoustical porous materials: Available experimental methods and applications to a melamine foam , 2008 .

[20]  Mamta Khaneja,et al.  Multifrequency characterization of viscoelastic polymers and vapor sensing based on SAW oscillators. , 2009, Ultrasonics.

[21]  B. Lee,et al.  Patterning a Two-Dimensional Colloidal Crystal by Water-Mediated Particle Transfer Printing , 2007 .

[22]  Henry Schriemer,et al.  Group Velocity in Strongly Scattering Media , 1996, Science.

[23]  V. Gusev,et al.  Two-dimensional discrete granular phononic crystal for shear wave control , 2012 .

[24]  Yvan Champoux,et al.  Dynamic tortuosity and bulk modulus in air‐saturated porous media , 1991 .

[25]  Z. Cao,et al.  Fabrication of centimeter-sized single-domain two-dimensional colloidal crystals in a wedge-shaped cell under capillary forces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[26]  J. Allard,et al.  Rayleigh waves in air saturated axisymmetrical soft porous media , 2009 .

[27]  C. Strobbia,et al.  Joint estimation of modal attenuation and velocity from multichannel surface wave data , 2014 .

[28]  Carlo G. Lai,et al.  IN SITU MEASUREMENT OF DAMPING RATIO USING SURFACE WAVES , 2000 .

[29]  Claire Prada,et al.  Power law decay of zero group velocity Lamb modes , 2008 .

[30]  L. Garcia-Raffi,et al.  Evidences of evanescent Bloch waves in phononic crystals , 2010, 1001.3793.

[31]  Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems , 2011 .

[32]  C. Prada,et al.  Laser impulse generation and interferometer detection of zero group velocity Lamb mode resonance , 2006 .

[33]  M. Medick,et al.  EXTENSIONAL VIBRATIONS OF ELASTIC PLATES , 1958 .

[34]  G. Theocharis,et al.  Nonlinear Periodic Phononic Structures and Granular Crystals , 2013 .

[35]  Sebastiano Foti,et al.  Simultaneous measurement of surface wave dispersion and attenuation curves , 2001 .

[36]  C. H. Cheng,et al.  Short Note Estimating phase velocity and attenuation of guided waves in acoustic logging data , 1989 .

[37]  Claire Prada,et al.  Local vibration of an elastic plate and zero-group velocity Lamb modes. , 2008, The Journal of the Acoustical Society of America.

[38]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[39]  John H. Page,et al.  Elastic Wave Scattering by Periodic Structures of Spherical Objects: Theory and Experiment , 2000 .

[40]  Mason A. Porter,et al.  Granular crystals: Nonlinear dynamics meets materials engineering , 2015 .

[41]  P Leclaire,et al.  Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. , 2011, The Journal of the Acoustical Society of America.