Chapter 10 – Forecasting and Uncertainty Analysis

Most groundwater models are constructed to make science-based forecasts, though a forecast can only reflect what is known at the time of the forecast. A forecast (prediction) is made by modifying the base model ( Chapter 9) to include stresses and other conditions expected to change in the future. Uncertainty about future conditions and inherent uncertainty in the base model impart uncertainty to forecasts. Forecasts encompassing long time periods and those that require a high degree of system characterization will have relatively higher levels of uncertainty. Methods for estimating uncertainty range from best- and worst-case scenarios to complex methods that account for multiple conceptual models. No model forecast should be reported without some estimate of uncertainty that can be conveyed to the decision-maker in an understandable way. Forecast uncertainty is less frequently assessed after the fact through postaudits.

[1]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[2]  T. Ulrych,et al.  Minimum relative entropy: Forward probabilistic modeling , 1993 .

[3]  R. Hunt,et al.  Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses. , 2010, Environmental science & technology.

[4]  Luk Peeters,et al.  Australian groundwater modelling guidelines , 2012 .

[5]  Michael N Fienen,et al.  We Speak for the Data , 2013, Ground water.

[6]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[7]  Keith Beven,et al.  A guide to good practice in modeling semantics for authors and referees , 2013 .

[8]  Mary C. Hill,et al.  MMA, A Computer Code for Multi-Model Analysis , 2014 .

[9]  J. Doherty,et al.  Uncertainty Analysis of a Groundwater Flow Model in East‐Central Florida , 2015, Ground water.

[10]  J. Bredehoeft The conceptualization model problem—surprise , 2005 .

[11]  T. Ulrych,et al.  A full‐Bayesian approach to the groundwater inverse problem for steady state flow , 2000 .

[12]  E. Scott Bair,et al.  A Monte Carlo-Based Approach for Determining Traveltime-Related Capture Zones of Wells Using Convex Hulls as Confidence Regions , 1991 .

[13]  John Doherty,et al.  Response to Comment on “Two statistics for evaluating parameter identifiability and error reduction” , 2010 .

[14]  K Beven,et al.  On the concept of model structural error. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[15]  R. Hunt,et al.  Delineating a Recharge Area for a Spring Using Numerical Modeling, Monte Carlo Techniques, and Geochemical Investigation , 2001, Ground water.

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  J. Lopreato,et al.  General system theory : foundations, development, applications , 1970 .

[18]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 1. Theory and numerical properties , 1977 .

[19]  R. Hunt,et al.  Simulation of climate-change effects on streamflow, lake water budgets, and stream temperature using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin , 2013 .

[20]  Steen Christensen,et al.  Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media , 2006 .

[21]  R. L. Cooley A theory for modeling ground-water flow in heterogeneous media , 2004 .

[22]  John Doherty,et al.  Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration , 2008 .

[23]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[24]  Randall J. Hunt,et al.  Source and transport of human enteric viruses in deep municipal water supply wells. , 2013, Environmental science & technology.

[25]  Richard L. Cooley,et al.  Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model , 1987 .

[26]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[27]  David Anderson,et al.  Multimodel Ranking and Inference in Ground Water Modeling , 2004, Ground water.

[28]  R. Freeze A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media , 1975 .

[29]  P. Kitanidis Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis , 1986 .

[30]  John Doherty,et al.  Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Model-Parameter and Predictive-Uncertainty Analysis , 2014 .

[31]  A. Bagtzoglou,et al.  Using Atmospheric Tracers to Reduce Uncertainty in Groundwater Recharge Areas , 2010, Ground water.

[32]  J. M. Shafer,et al.  Assessment of Uncertainty in Time‐Related Capture Zones Using Conditional Simulation of Hydraulic Conductivity , 1991 .

[33]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 3. Application to Design of a Ground‐Water Control System at an Open Pit Mine , 1992 .

[34]  Al-Aziz Eddebbarh,et al.  Practical Postcalibration Uncertainty Analysis: Yucca Mountain, Nevada , 2009, Ground water.

[35]  J. Doherty,et al.  Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques , 2009 .

[36]  John Doherty,et al.  Groundwater modelling in decision support: reflections on a unified conceptual framework , 2013, Hydrogeology Journal.

[37]  Mary C. Hill,et al.  Comment on ``Two statistics for evaluating parameter identifiability and error reduction'' by John Doherty and Randall J. Hunt , 2010 .

[38]  J. Doherty Modeling: Picture Perfect or Abstract Art? , 2011, Ground water.

[39]  D. Higdon,et al.  A Markov Chain Monte Carlo method for the groundwater inverse problem. , 2004 .

[40]  You‐Kuan Zhang Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .

[41]  Ahmed E. Hassan,et al.  Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis , 2008 .

[42]  John Doherty,et al.  Efficient nonlinear predictive error variance for highly parameterized models , 2006 .

[43]  Ming Ye,et al.  A Model‐Averaging Method for Assessing Groundwater Conceptual Model Uncertainty , 2010, Ground water.

[44]  John Doherty,et al.  Quantifying the predictive consequences of model error with linear subspace analysis , 2014 .

[45]  Steen Christensen A synthetic groundwater modelling study of the accuracy of GLUE uncertainty intervals , 2002 .

[46]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[47]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[48]  D. Jorgensen Geohydrologic Models of the Houston District, Texas , 1981 .

[49]  G. Dagan Flow and transport in porous formations , 1989 .

[50]  Y. Rubin Applied Stochastic Hydrogeology , 2003 .

[51]  Srikanta Mishra,et al.  Model Averaging Techniques for Quantifying Conceptual Model Uncertainty , 2010, Ground water.

[52]  Abdolreza Bahremand,et al.  Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model , 2010 .

[53]  John Doherty,et al.  A short exploration of structural noise , 2010 .

[54]  John Doherty,et al.  Efficient regularization and uncertainty analysis using a global optimization methodology , 2010 .

[55]  G. Mariéthoz,et al.  Bayesian inverse problem and optimization with iterative spatial resampling , 2010 .

[56]  Willem J. de Lange Development of an analytic element ground water model of the Netherlands. , 2006 .

[57]  David J. Dahlstrom Calibration and Uncertainty Analysis for Complex Environmental Models , 2015 .

[58]  R. Hunt,et al.  Simulation of the recharge area for Frederick Springs, Dane County, Wisconsin , 2000 .

[59]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state Groundwater flow: 2. Application of statistical analysis , 1979 .

[60]  R. Hunt,et al.  Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration , 2010 .

[61]  Rangasami L. Kashyap,et al.  Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  R. Hunt,et al.  Using models for the optimization of hydrologic monitoring , 2011 .

[63]  Mojdeh Delshad,et al.  Comparison of ensemble filtering algorithms and null‐space Monte Carlo for parameter estimation and uncertainty quantification using CO2 sequestration data , 2013 .

[64]  Richard L. Cooley,et al.  Confidence Intervals for Ground‐Water Models Using Linearization, Likelihood, and Bootstrap Methods , 1997 .

[65]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 1. A Framework , 1990 .

[66]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[67]  Alain Dassargues,et al.  Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging , 2008 .

[68]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[69]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[70]  John Doherty,et al.  Predictive uncertainty analysis of a saltwater intrusion model using null‐space Monte Carlo , 2011 .

[71]  J. Minx,et al.  Climate Change 2014 : Synthesis Report , 2014 .

[72]  John Doherty,et al.  Using Prediction Uncertainty Analysis to Design Hydrologic Monitoring Networks: Example Applications from the Great Lakes Water Availability Pilot Project , 2014 .

[73]  C. Tiedeman,et al.  Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty , 2007 .

[74]  John Doherty,et al.  Two statistics for evaluating parameter identifiability and error reduction , 2009 .

[75]  Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated deposits of the Colville River Watershed, Stevens County, Washington , 2004 .

[76]  Steen Christensen,et al.  Evaluation of prediction intervals for expressing uncertainties in groundwater flow model predictions , 1999 .

[77]  F. Pappenberger,et al.  Ignorance is bliss: Or seven reasons not to use uncertainty analysis , 2006 .

[78]  Hesham M. Bekhit,et al.  Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model , 2009, Environ. Model. Softw..

[79]  G. Dagan Statistical Theory of Groundwater Flow and Transport: Pore to Laboratory, Laboratory to Formation, and Formation to Regional Scale , 1986 .

[80]  Daniel M. Tartakovsky,et al.  Assessment and management of risk in subsurface hydrology: A review and perspective , 2013 .

[81]  P. Kitanidis,et al.  A Bayesian geostatistical transfer function approach to tracer test analysis , 2006 .

[82]  Silvio Funtowicz,et al.  Are all models wrong? , 2020, Computational and systems oncology.

[83]  D. Krabbenhoft,et al.  Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach , 2009 .

[84]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 2. Applications to Ground‐Water Contamination , 1991 .

[85]  S. P. Neuman,et al.  Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .

[86]  D. Saad,et al.  Numerical simulation of ground-water flow in La Crosse County, Wisconsin, and into nearby pools of the Mississippi River , 2003 .

[87]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[88]  T. Yeh,et al.  Hydraulic tomography: Development of a new aquifer test method , 2000 .

[89]  R. Hunt,et al.  Are Models Too Simple? Arguments for Increased Parameterization , 2007, Ground water.

[90]  R. Hunt,et al.  Viruses as Groundwater Tracers: Using Ecohydrology to Characterize Short Travel Times in Aquifers , 2014, Ground water.

[91]  Randall J Hunt,et al.  Taking Account of “Unknown Unknowns” , 2010, Ground water.

[92]  Keith J. Beven,et al.  Environmental Modelling: An Uncertain Future?: An Introduction to Techniques for Uncertainty Estimation in Environmental Prediction , 2010 .

[93]  Carsten Montzka,et al.  Uncertainties in the simulation of groundwater recharge at different scales , 2005 .

[94]  Max Henrion,et al.  Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis , 1990 .

[95]  Leslie Smith,et al.  A Bayesian Approach to the quantification of the effect of model error on the predictions of groundwater models , 2001 .

[96]  John Doherty,et al.  Predictive error analysis for a water resource management model , 2007 .

[97]  Forward Model Nonlinearity versus Inverse Model Nonlinearity , 2007, Ground water.

[98]  D. Mallants,et al.  Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion , 2013 .

[99]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 4. The Concept of Data Worth and Its Use in the Development of Site Investigation Strategies , 1992 .

[100]  J. Doherty,et al.  Role of the calibration process in reducing model predictive error , 2005 .

[101]  Claire R. Tiedeman,et al.  OPR-PPR, a Computer Program for Assessing Data Importance to Model Predictions Using Linear Statistics , 2014 .

[102]  Mark Person,et al.  Assessment of Long-Term Salinity Changes in an Irrigated Stream-Aquifer System , 1985 .

[103]  David Hart,et al.  Parameter estimation and predictive uncertainty in stochastic inverse modeling of groundwater flow: Comparing null‐space Monte Carlo and multiple starting point methods , 2013 .

[104]  Victor A Kelson,et al.  Improving a Regional Model Using Reduced Complexity and Parameter Estimation , 2002, Ground water.

[105]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[106]  Christian D Langevin,et al.  Quantifying Data Worth Toward Reducing Predictive Uncertainty , 2010, Ground water.

[107]  P. Kitanidis,et al.  Hydraulic conductivity imaging from 3‐D transient hydraulic tomography at several pumping/observation densities , 2013 .

[108]  Q. Kang,et al.  Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality , 2010 .

[109]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[110]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .