Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis
暂无分享,去创建一个
[1] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[2] Bert Jüttler,et al. Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.
[3] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[4] T. Belytschko,et al. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .
[5] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[6] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[7] M. Scott,et al. Acoustic isogeometric boundary element analysis , 2014 .
[8] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[9] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[10] Gerald Farin,et al. NURBS: From Projective Geometry to Practical Use , 1999 .
[11] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[12] Xin Li,et al. Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.
[13] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[14] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[15] M. Larson,et al. Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .
[16] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[17] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[18] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[19] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[20] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[21] Dmitry Berdinsky,et al. Trigonometric generalized T-splines , 2014 .
[22] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[23] Thomas J. R. Hughes,et al. An isogeometric analysis approach to gradient damage models , 2011 .
[24] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[25] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[26] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[27] Alessandro Reali,et al. Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .
[28] Thomas J. R. Hughes,et al. Isogeometric boundary-element analysis for the wave-resistance problem using T-splines , 2014 .
[29] Jiansong Deng,et al. Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.
[30] Yuri Bazilevs,et al. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .
[31] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[32] D. Schillinger,et al. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .
[33] Jiansong Deng,et al. Dimensions of Spline Spaces over 3D Hierarchical T-Meshes ? , 2006 .
[34] Matthew T. Sederberg,et al. T-Splines : A Technology for Marine Design with Minimal Control Points , 2010 .
[35] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .
[36] Cv Clemens Verhoosel,et al. Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .
[37] W. Wall,et al. Isogeometric structural shape optimization , 2008 .
[38] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[39] P. Wriggers,et al. Isogeometric large deformation frictionless contact using T-splines , 2014 .
[40] Jiansong Deng,et al. Modified T-splines , 2013, Comput. Aided Geom. Des..
[41] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[42] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[43] John A. Evans,et al. Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.
[44] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[45] Cv Clemens Verhoosel,et al. A phase-field description of dynamic brittle fracture , 2012 .
[46] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[47] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[48] Thomas J. R. Hughes,et al. Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.
[49] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[50] Thomas W. Sederberg,et al. COMPUTER AIDED GEOMETRIC DESIGN , 2012 .
[51] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[52] Bernard Mourrain,et al. Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..
[53] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[54] Roland Wüchner,et al. Isogeometric analysis of trimmed NURBS geometries , 2012 .
[55] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[56] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[57] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[58] Michael A. Scott,et al. Isogeometric spline forests , 2014 .
[59] Giancarlo Sangalli,et al. Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..
[60] Cv Clemens Verhoosel,et al. An isogeometric continuum shell element for non-linear analysis , 2014 .
[61] T. Hughes,et al. Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .
[62] M. H. Doweidar,et al. Mesh adaptivity for the transport equation led by variational multiscale error estimators , 2012 .
[63] Thomas J. R. Hughes,et al. An isogeometric approach to cohesive zone modeling , 2011 .
[64] Alessandro Reali,et al. Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .
[65] Mohamed Hamdy Doweidar,et al. The multiscale approach to error estimation and adaptivity , 2006 .