Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis

Abstract In this paper hierarchical analysis-suitable T-splines (HASTS) are developed. The resulting spaces are a superset of both analysis-suitable T-splines and hierarchical B-splines. The additional flexibility provided by the hierarchy of T-spline spaces results in simple, highly localized refinement algorithms which can be utilized in a design or analysis context. A detailed theoretical formulation is presented. Bezier extraction is extended to HASTS simplifying the implementation of HASTS in existing finite element codes. The behavior of a simple HASTS refinement algorithm is compared to the local refinement algorithm for analysis-suitable T-splines demonstrating the superior efficiency and locality of the HASTS algorithm. Finally, HASTS are utilized as a basis for adaptive isogeometric analysis.

[1]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[2]  Bert Jüttler,et al.  Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.

[3]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[4]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[5]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[6]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[7]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[8]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[9]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[10]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[11]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[12]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[13]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[14]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[15]  M. Larson,et al.  Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Duality Techniques for Elliptic Problems , 2005 .

[16]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[17]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[18]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[19]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[20]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[21]  Dmitry Berdinsky,et al.  Trigonometric generalized T-splines , 2014 .

[22]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[23]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[24]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[25]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[26]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[27]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[28]  Thomas J. R. Hughes,et al.  Isogeometric boundary-element analysis for the wave-resistance problem using T-splines , 2014 .

[29]  Jiansong Deng,et al.  Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[30]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[31]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[32]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[33]  Jiansong Deng,et al.  Dimensions of Spline Spaces over 3D Hierarchical T-Meshes ? , 2006 .

[34]  Matthew T. Sederberg,et al.  T-Splines : A Technology for Marine Design with Minimal Control Points , 2010 .

[35]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[36]  Cv Clemens Verhoosel,et al.  Goal-adaptive Isogeometric Analysis with hierarchical splines , 2014 .

[37]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[38]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[39]  P. Wriggers,et al.  Isogeometric large deformation frictionless contact using T-splines , 2014 .

[40]  Jiansong Deng,et al.  Modified T-splines , 2013, Comput. Aided Geom. Des..

[41]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[42]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[43]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[44]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[45]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[46]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[47]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[48]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[49]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[50]  Thomas W. Sederberg,et al.  COMPUTER AIDED GEOMETRIC DESIGN , 2012 .

[51]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[52]  Bernard Mourrain,et al.  Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..

[53]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[54]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[55]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[56]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[57]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[58]  Michael A. Scott,et al.  Isogeometric spline forests , 2014 .

[59]  Giancarlo Sangalli,et al.  Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations , 2012, J. Comput. Phys..

[60]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[61]  T. Hughes,et al.  Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .

[62]  M. H. Doweidar,et al.  Mesh adaptivity for the transport equation led by variational multiscale error estimators , 2012 .

[63]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[64]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[65]  Mohamed Hamdy Doweidar,et al.  The multiscale approach to error estimation and adaptivity , 2006 .