Mean field representation of the natural and actuated cylinder wake

The necessity to include dynamic mean field representations in low order Galerkin models, and the role and form of such representations, are explored along natural and forced transients of the cylinder wake flow. The shift mode was introduced by Noack et al. [J. Fluid Mech. 497, 335 (2003)] as a least-order Galerkin representation of mean flow variations. The need to include the shift mode was argued in that paper in terms of the dynamic properties of a low order Galerkin model. The present study revisits and elucidates this issue with a direct focus on the Navier–Stokes equations (NSEs) and on the bilateral coupling between variations in the fluctuation growth rate and mean flow variations in the NSE. A detailed transient modal energy flow analysis is introduced as a new tool to quantitatively demonstrate the indispensable role of mean field variations, as well as the capacity of the shift mode to represent that contribution. Four variants of local and global shift mode derivations are examined and compa...

[1]  B. R. Noack,et al.  Feedback shear layer control for bluff body drag reduction , 2008, Journal of Fluid Mechanics.

[2]  B. R. Noack,et al.  Global flow stability analysis and reduced order modeling for bluff-body flow control , 2007 .

[3]  B. R. Noack,et al.  A Finite-Time Thermodynamics of Unsteady Fluid Flows , 2008 .

[4]  V. Ralph Algazi,et al.  On the optimality of the Karhunen-Loève expansion (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[5]  K. Sreenivasan,et al.  HOPF BIFURCATION, LANDAU EQUATION, AND VORTEX SHEDDING BEHIND CIRCULAR CYLINDERS. , 1987 .

[6]  Kelly Cohen,et al.  Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition , 2008, Journal of Fluid Mechanics.

[7]  B. R. Noack,et al.  Low Order Galerkin Models for the Actuated Flow Around 2-D Airfoils , 2007 .

[8]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[9]  Nonlinear coupling of fluctuating drag and lift on cylinders undergoing forced oscillations , 2006, Journal of Fluid Mechanics.

[10]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[11]  B. R. Noack,et al.  Wake stabilization using POD Galerkin models with interpolated modes , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[12]  Stefan Siegel,et al.  EXPERIMENTAL VARIABLE GAIN FEEDBACK CONTROL OF A CIRCULAR CYLINDER WAKE , 2004 .

[13]  K. Afanasiev,et al.  Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis , 1999 .

[14]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[15]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[16]  Clarence W. Rowley,et al.  Low-Dimensional Models for Feedback Stabilization of Unstable Steady States , 2008 .

[17]  C. P. Jackson A finite-element study of the onset of vortex shedding in flow past variously shaped bodies , 1987, Journal of Fluid Mechanics.

[18]  S.M. Djouadi,et al.  Reduced order models for boundary feedback flow control , 2008, 2008 American Control Conference.

[19]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[20]  D. Barkley Linear analysis of the cylinder wake mean flow , 2006 .

[21]  Kimon Roussopoulos,et al.  Nonlinear modelling of vortex shedding control in cylinder wakes , 1996 .

[22]  J. T. Stuart Nonlinear Stability Theory , 1971, Handbook of Marine Craft Hydrodynamics and Motion Control.

[23]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[24]  K. Sreenivasan,et al.  On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers , 1990, Journal of Fluid Mechanics.

[25]  James H. Myatt,et al.  Flow and Aero-Optics Around a Turret Part II: Surface Pressure Based Proportional Closed Loop Flow Control , 2008 .

[26]  Fu Li,et al.  A Reduced Order Galerkin Model for the Reacting Flame Holder , 2006 .

[27]  J. Dusek,et al.  A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake , 1994, Journal of Fluid Mechanics.

[28]  Bartosz Protas,et al.  Linear feedback stabilization of laminar vortex shedding based on a point vortex model , 2004 .

[29]  B. R. Noack,et al.  Actuation models and dissipative control in empirical Galerkin models of fluid flows , 2004, Proceedings of the 2004 American Control Conference.

[30]  Gilead Tadmor,et al.  H ∞ optimal sampled-data control in continuous time systems , 1992 .

[31]  Stefan Siegel,et al.  FEEDBACK CONTROL OF A CIRCULAR CYLINDER WAKE IN EXPERIMENT AND SIMULATION (INVITED) , 2003 .

[32]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[33]  B. Francis,et al.  A lifting technique for linear periodic systems with applications to sampled-data control , 1991 .

[34]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[35]  Gilead Tadmor,et al.  Low-Dimensional Models For Feedback Flow Control. Part I: Empirical Galerkin models , 2004 .

[36]  O. Marquet,et al.  Sensitivity analysis and passive control of cylinder flow , 2008, Journal of Fluid Mechanics.

[37]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[38]  Bernd R. Noack,et al.  A global stability analysis of the steady and periodic cylinder wake , 1994, Journal of Fluid Mechanics.

[39]  P. Monkewitz,et al.  THE BIFURCATION OF A HOT ROUND JET TO LIMIT-CYCLE OSCILLATIONS , 1991 .

[40]  R. Henderson,et al.  Three-dimensional Floquet stability analysis of the wake of a circular cylinder , 1996, Journal of Fluid Mechanics.

[41]  J. Wesfreid,et al.  Drag force in the open-loop control of the cylinder wake in the laminar regime , 2002 .

[42]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[43]  Troy R. Smith,et al.  Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial , 2005 .

[44]  Gilead Tadmor,et al.  System reduction strategy for Galerkin models of fluid flows , 2009 .

[45]  Gilead Tadmor,et al.  Reduced order Galerkin models of flow around NACA‐0012 airfoil , 2008 .

[46]  D. Rockwell,et al.  On vortex formation from a cylinder. Part 2. Control by splitter-plate interference , 1988, Journal of Fluid Mechanics.

[47]  A. Hay,et al.  INTERVAL-BASED REDUCED-ORDER MODELS FOR UNSTEADY FLUID FLOW , 2007 .

[48]  Ari Glezer,et al.  Development of an extended proper orthogonal decomposition and its application to a time periodically forced plane mixing layer , 1989 .

[49]  J. Wesfreid,et al.  STRONGLY NONLINEAR EFFECT IN UNSTABLE WAKES , 1997 .

[50]  Pierre Sagaut,et al.  Intermodal energy transfers in a proper orthogonal decomposition–Galerkin representation of a turbulent separated flow , 2003, Journal of Fluid Mechanics.

[51]  E. Detemple-Laake,et al.  Phenomenology of Kármán vortex streets in oscillatory flow , 1989 .

[52]  Michel Loève,et al.  Probability Theory I , 1977 .

[53]  José Eduardo Wesfreid,et al.  On the spatial structure of global modes in wake flow , 1995 .

[54]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[55]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[56]  Bartosz Protas,et al.  Optimal rotary control of the cylinder wake in the laminar regime , 2002 .

[57]  Kimon Roussopoulos,et al.  Feedback control of vortex shedding at low Reynolds numbers , 1993, Journal of Fluid Mechanics.

[58]  A. Zebib Stability of viscous flow past a circular cylinder , 1987 .

[59]  Charles-Henri Bruneau,et al.  Enablers for robust POD models , 2009, J. Comput. Phys..

[60]  M. Thompson,et al.  The Stuart-Landau model applied to wake transition revisited , 2004 .

[61]  W. L. Ijzerman,et al.  Signal Representation and Modeling of Spatial Structures in Fluids , 2000 .

[62]  J. Wesfreid,et al.  Stability properties of forced wakes , 2007, Journal of Fluid Mechanics.

[63]  Global Mode Behavior of the Streamwise Velocity in Wakes , 1996 .

[64]  G. Karniadakis,et al.  Three-dimensional dynamics and transition to turbulence in the wake of bluff objects , 1992, Journal of Fluid Mechanics.

[65]  Charles-Henri Bruneau,et al.  Low-order modelling of laminar flow regimes past a confined square cylinder , 2004, Journal of Fluid Mechanics.

[66]  Frank Thiele,et al.  Continuous Mode Interpolation for Control-Oriented Models of Fluid Flow , 2007 .

[67]  Clarence W. Rowley,et al.  Low-Dimensional Models for Control of Leading-Edge Vortices: Equilibria and Linearized Models , 2007 .

[68]  Robert King,et al.  Model-based Control of Vortex Shedding Using Low-dimensional Galerkin Models , 2003 .

[69]  Clarence W. Rowley,et al.  Snapshot-Based Balanced Truncation for Linear Time-Periodic Systems , 2007, IEEE Transactions on Automatic Control.

[70]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[71]  Dan S. Henningson,et al.  Linear feedback control and estimation applied to instabilities in spatially developing boundary layers , 2007, Journal of Fluid Mechanics.

[72]  Hossein Haj-Hariri,et al.  Reduced-Order Modeling of a Heaving Airfoil , 2005 .

[73]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[74]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[75]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[76]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[77]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[78]  Gilead Tadmor,et al.  A generalized mean-field model of the natural and high-frequency actuated flow around a high-lift configuration , 2009 .

[79]  Bernd R. Noack,et al.  Low-Dimensional Models For Feedback Flow Control. Part II: Control Design and Dynamic Estimation , 2004 .

[80]  Remi Manceau,et al.  Examination of large-scale structures in a turbulent plane mixing layer. Part 2. Dynamical systems model , 2001, Journal of Fluid Mechanics.

[81]  D. Henningson,et al.  Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes , 2007, Journal of Fluid Mechanics.

[82]  Hermann F. Fasel,et al.  Dynamics of three-dimensional coherent structures in a flat-plate boundary layer , 1994, Journal of Fluid Mechanics.

[83]  Robert King Active Flow Control , 2007 .

[84]  J. T. Stuart On the non-linear mechanics of hydrodynamic stability , 1958, Journal of Fluid Mechanics.

[85]  Geir E. Dullerud,et al.  Model reduction of periodic systems: a lifting approach , 2005, Autom..