The Molecular Biology of Kidney Cancer and Its Clinical Translation into Treatment Strategies

[1]  R. Figlin,et al.  Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-{alpha}) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC) , 2006 .

[2]  R. Figlin,et al.  Phase III randomized trial of sunitinib malate (SU11248) versus interferon-alfa (IFN-α) as first-line systemic therapy for patients with metastatic renal cell carcinoma (mRCC). , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  R. Figlin,et al.  Bevacizumab with or without erlotinib in metastatic renal cell carcinoma (RCC). , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  R. Figlin,et al.  A phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferon-alpha (IFN) or the combination of TEMSR + IFN in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma (adv RCC). , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  R. Bukowski,et al.  Randomized phase III trial of sorafenib in advanced renal cell carcinoma (RCC): Impact of crossover on survival , 2006 .

[6]  R. Motzer,et al.  Sunitinib in patients with metastatic renal cell carcinoma. , 2006, JAMA.

[7]  H. Clevers,et al.  Interplay between VHL/HIF1α and Wnt/β-catenin pathways during colorectal tumorigenesis , 2006, Oncogene.

[8]  N. Sang,et al.  Histone Deacetylase Inhibitors Induce VHL and Ubiquitin-Independent Proteasomal Degradation of Hypoxia-Inducible Factor 1α , 2006, Molecular and Cellular Biology.

[9]  M. Ohh,et al.  Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. , 2006, Cancer research.

[10]  P. Jemth,et al.  Renal cell carcinoma risk in type 2 von Hippel–Lindau disease correlates with defects in pVHL stability and HIF-1α interactions , 2006, Oncogene.

[11]  W. Kaelin,et al.  The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. , 2005, Biochemical and biophysical research communications.

[12]  D. Mukhopadhyay,et al.  Role of elongin-binding domain of von hippel lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal cell carcinoma , 2005, Oncogene.

[13]  J. Hainsworth,et al.  Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  M. Rettig,et al.  Mechanism of von Hippel-Lindau Protein-Mediated Suppression of Nuclear Factor kappa B Activity , 2005, Molecular and Cellular Biology.

[15]  L. Gunaratnam,et al.  Regulation of ubiquitin ligase dynamics by the nucleolus , 2005, The Journal of cell biology.

[16]  W. Kaelin,et al.  Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. , 2005, Cancer cell.

[17]  James Bradner,et al.  Inhibition of Histone Deacetylase 6 Acetylates and Disrupts the Chaperone Function of Heat Shock Protein 90 , 2005, Journal of Biological Chemistry.

[18]  G. Semenza,et al.  Stromal Cell–Derived Factor-1α and CXCR4 Expression in Hemangioblastoma and Clear Cell-Renal Cell Carcinoma: von Hippel-Lindau Loss-of-Function Induces Expression of a Ligand and Its Receptor , 2005 .

[19]  Patrick H. Maxwell,et al.  Contrasting Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-Associated Renal Cell Carcinoma , 2005, Molecular and Cellular Biology.

[20]  L. Gunaratnam,et al.  Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. , 2005, Cancer research.

[21]  W. Kaelin,et al.  Proline hydroxylation and gene expression. , 2005, Annual review of biochemistry.

[22]  M. Ratain,et al.  Final findings from a phase II, placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC) , 2005 .

[23]  W. Kaelin,et al.  ROS: really involved in oxygen sensing. , 2005, Cell metabolism.

[24]  R. Motzer,et al.  AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates anti-tumor activity in a Phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC) , 2005 .

[25]  R. Bukowski,et al.  Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC) , 2005 .

[26]  L. Huang,et al.  Differential Gene Up-Regulation by Hypoxia-Inducible Factor-1α and Hypoxia-Inducible Factor-2α in HEK293T Cells , 2005 .

[27]  C. Brinckerhoff,et al.  Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2α in von Hippel–Lindau renal cell carcinoma , 2005, Oncogene.

[28]  L. Neckers,et al.  Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics – an update , 2005, Expert opinion on emerging drugs.

[29]  Randy Allred,et al.  A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. , 2005, Blood.

[30]  W. Kaelin,et al.  Role of VHL gene mutation in human cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  A. Hussain,et al.  A Phase II Trial of Gefitinib (Iressa, ZD1839) in Stage IV and Recurrent Renal Cell Carcinoma , 2004, Clinical Cancer Research.

[32]  E. Hafen,et al.  Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. , 2004, Genes & development.

[33]  Fatima Mechta-Grigoriou,et al.  JunD Reduces Tumor Angiogenesis by Protecting Cells from Oxidative Stress , 2004, Cell.

[34]  Martin S. Taylor,et al.  Genetic Analysis of Pathways Regulated by the von Hippel-Lindau Tumor Suppressor in Caenorhabditis elegans , 2004, PLoS biology.

[35]  Priti Garg,et al.  Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis , 2004, The EMBO journal.

[36]  S. Steinberg,et al.  Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  L. Gunaratnam,et al.  HIF activation by pH-dependent nucleolar sequestration of VHL , 2004, Nature Cell Biology.

[38]  Christopher J. Schofield,et al.  Oxygen sensing by HIF hydroxylases , 2004, Nature Reviews Molecular Cell Biology.

[39]  R. Schilsky,et al.  Cancer and Leukemia Group B 90206 , 2004, Clinical Cancer Research.

[40]  J. Meller,et al.  von Hippel-Lindau tumor suppressor: not only HIF's executioner. , 2004, Trends in molecular medicine.

[41]  J. Klco,et al.  pVHL Modification by NEDD8 Is Required for Fibronectin Matrix Assembly and Suppression of Tumor Development , 2004, Molecular and Cellular Biology.

[42]  S. Liou,et al.  Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[43]  G. Paine-Murrieta,et al.  Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α , 2004, Molecular Cancer Therapeutics.

[44]  Y. Pommier,et al.  Topoisomerase I-Mediated Inhibition of Hypoxia-Inducible Factor 1 , 2004, Cancer Research.

[45]  O. Iliopoulos,et al.  Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. , 2004, Molecular cancer research : MCR.

[46]  K. Chayama,et al.  Mutation of the von Hippel‐Lindau (VHL) gene in human colorectal carcinoma: Association with cytoplasmic accumulation of hypoxia‐inducible factor (HIF)‐1α , 2004, Cancer science.

[47]  A. Harris,et al.  Hypoxia Inducible Carbonic Anhydrase IX, Marker of Tumour: Hypoxia, Survival Pathway and Therapy Target , 2004, Cell cycle.

[48]  W. Kaelin,et al.  Inhibition of HIF2α Is Sufficient to Suppress pVHL-Defective Tumor Growth , 2003, PLoS biology.

[49]  Brian Keith,et al.  Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation , 2003, Molecular and Cellular Biology.

[50]  M. Gorospe,et al.  Influence of the RNA-Binding Protein HuR in pVHL-Regulated p53 Expression in Renal Carcinoma Cells , 2003, Molecular and Cellular Biology.

[51]  A. Harris,et al.  Predominant role of hypoxia-inducible transcription factor (Hif)-1alpha versus Hif-2alpha in regulation of the transcriptional response to hypoxia. , 2003, Cancer research.

[52]  H. Moch,et al.  Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL , 2003, Nature.

[53]  J. Pouysségur,et al.  HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1α in normoxia , 2003, The EMBO journal.

[54]  J. Howell,et al.  A Novel Hypoxia-inducible Factor-independent Hypoxic Response Regulating Mammalian Target of Rapamycin and Its Targets* , 2003, Journal of Biological Chemistry.

[55]  William R Sellers,et al.  TSC2 regulates VEGF through mTOR-dependent and -independent pathways. , 2003, Cancer cell.

[56]  Seth M Steinberg,et al.  A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. , 2003, The New England journal of medicine.

[57]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[58]  H. Tabuchi,et al.  Loss of von Hippel-Lindau protein causes cell density dependent deregulation of CyclinD1 expression through Hypoxia-inducible factor , 2003, Oncogene.

[59]  D. Kwiatkowski Rhebbing up mTOR: New Insights on TSC1 and TSC2, and the Pathogenesis of Tuberous Sclerosis , 2003, Cancer biology & therapy.

[60]  D. Hanahan,et al.  Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. , 2003, The Journal of clinical investigation.

[61]  N. Pryer,et al.  SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. , 2003, Molecular cancer therapeutics.

[62]  J. Klco,et al.  Gene expression profiling in a renal cell carcinoma cell line: dissecting VHL and hypoxia-dependent pathways. , 2003, Molecular cancer research : MCR.

[63]  J. Simons,et al.  2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. , 2003, Cancer cell.

[64]  D. Kirkpatrick,et al.  The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. , 2003, Molecular cancer therapeutics.

[65]  H. Kwon,et al.  Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. , 2002, Molecular pharmacology.

[66]  Kazuki Kobayashi,et al.  VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. , 2002, Journal of the National Cancer Institute.

[67]  C. Eng,et al.  The pressure rises: update on the genetics of phaeochromocytoma. , 2002, Human molecular genetics.

[68]  Christine C. Hudson,et al.  Regulation of Hypoxia-Inducible Factor 1α Expression and Function by the Mammalian Target of Rapamycin , 2002, Molecular and Cellular Biology.

[69]  W. Kaelin,et al.  Molecular basis of the VHL hereditary cancer syndrome , 2002, Nature Reviews Cancer.

[70]  L. Neckers,et al.  Hsp90 Regulates a von Hippel Lindau-independent Hypoxia-inducible Factor-1α-degradative Pathway* , 2002, The Journal of Biological Chemistry.

[71]  A. D. Van den Abbeele,et al.  Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. , 2002, The New England journal of medicine.

[72]  D. Scudiero,et al.  Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. , 2002, Cancer research.

[73]  R. Houlston,et al.  Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease. , 2002, Cancer research.

[74]  Charles C Wykoff,et al.  HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. , 2002, Cancer cell.

[75]  Richard D Klausner,et al.  VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells. , 2002, Cancer research.

[76]  Erwin G. Van Meir,et al.  Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. , 2002, Cancer research.

[77]  Mirna Lechpammer,et al.  Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. , 2002, Cancer cell.

[78]  L. Neckers,et al.  Hsp90 inhibitors as novel cancer chemotherapeutic agents. , 2002, Trends in molecular medicine.

[79]  Richard D Klausner,et al.  The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. , 2002, Cancer cell.

[80]  T. Shuin,et al.  von Hippel-Lindau protein promotes the assembly of actin and vinculin and inhibits cell motility. , 2001, Cancer research.

[81]  M. Ivan,et al.  von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. , 2001, Human molecular genetics.

[82]  P. Ratcliffe,et al.  Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. , 2001, Human molecular genetics.

[83]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[84]  Eun-Joung Moon,et al.  Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes , 2001, Nature Medicine.

[85]  R. Burk,et al.  Endoplasmic reticulum/cytosolic localization of von Hippel‐Lindau gene products is mediated by a 64–amino acid region , 2001, International journal of cancer.

[86]  R. Klausner,et al.  Role of transforming growth factor-alpha in von Hippel--Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[87]  R. Burk,et al.  VHL Induces Renal Cell Differentiation and Growth Arrest through Integration of Cell-Cell and Cell-Extracellular Matrix Signaling , 2001, Molecular and Cellular Biology.

[88]  Shigeyoshi Itohara,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis , 2000, Nature Cell Biology.

[89]  M. Ivan,et al.  Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein , 2000, Nature Cell Biology.

[90]  K. Nagashima,et al.  The von Hippel-Lindau tumor suppressor targets to mitochondria. , 2000, Cancer research.

[91]  B. Zbar,et al.  Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel-Lindau protein. , 1999, The Journal of clinical investigation.

[92]  D. Mottet,et al.  Hypoxia‐induced activation of HIF‐1: role of HIF‐1α‐Hsp90 interaction , 1999 .

[93]  R. Klausner,et al.  The von Hippel-Lindau Tumor Suppressor Gene Inhibits Hepatocyte Growth Factor/Scatter Factor-Induced Invasion and Branching Morphogenesis in Renal Carcinoma Cells , 1999, Molecular and Cellular Biology.

[94]  J. Foekens,et al.  Regulation of the urokinase-type plasminogen activator system by the von Hippel-Lindau tumor suppressor gene. , 1999, Cancer research.

[95]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[96]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[97]  B. Seizinger,et al.  Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity , 1999, Oncogene.

[98]  R. Klausner,et al.  Transcription-Dependent Nuclear-Cytoplasmic Trafficking Is Required for the Function of the von Hippel-Lindau Tumor Suppressor Protein , 1999, Molecular and Cellular Biology.

[99]  D. Pode,et al.  Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. , 1999, The Journal of clinical investigation.

[100]  W. Kaelin,et al.  von Hippel-Lindau gene-mediated growth suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. , 1998, Cancer research.

[101]  W. Kaelin,et al.  pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  B. Zbar,et al.  Subcellular localization of the von Hippel‐Lindau disease gene product is cell cycle‐dependent , 1998, International journal of cancer.

[103]  R. Burk,et al.  A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[104]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[105]  R. Klausner,et al.  The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[106]  W. Kaelin,et al.  von Hippel-Lindau disease. , 1997, Medicine.

[107]  W. Kaelin,et al.  Role of the retinoblastoma protein in the pathogenesis of human cancer. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[108]  A. Kibel,et al.  Immunostaining of the von Hippel-Lindau gene product in normal and neoplastic human tissues. , 1997, Human pathology.

[109]  W. Linehan,et al.  Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients. , 1996, The American journal of pathology.

[110]  W. Kaelin,et al.  Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[111]  R. Klausner,et al.  Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[112]  W. Linehan,et al.  Detection of von Hippel-Lindau disease gene mutations in paraffin-embedded sporadic renal cell carcinoma specimens. , 1996, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.

[113]  W. Kaelin,et al.  Expression pattern of the von Hippel-Lindau protein in human tissues. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[114]  R. Klausner,et al.  Molecular cloning of the von Hippel-Lindau tumor suppressor gene and its role in renal carcinoma. , 1996, Biochimica et biophysica acta.

[115]  R. Klausner,et al.  Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene product is determined by cell density. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[116]  L. Liotta,et al.  von Hippel-Lindau disease gene deletion detected in microdissected sporadic human colon carcinoma specimens. , 1996, Human pathology.

[117]  A. Kibel,et al.  Tumour suppression by the human von Hippel-Lindau gene product , 1995, Nature Medicine.

[118]  R. Warren,et al.  Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. , 1995, The Journal of clinical investigation.

[119]  L. Liotta,et al.  A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. , 1995, The American journal of pathology.

[120]  R. Figlin,et al.  Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[121]  I. Mellinghoff,et al.  Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer , 2006, Nature Medicine.

[122]  E. Raymond,et al.  Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[123]  P. Atadja,et al.  Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. , 2004, Novartis Foundation symposium.

[124]  Juthamas Sukbuntherng,et al.  In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[125]  W. Krek,et al.  Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL , 2003, Nature Cell Biology.

[126]  M. Bibby,et al.  In vitro and in vivo activity of LS 4477 and LS 4559, novel analogues of the tubulin binder estramustine. , 2002, European journal of cancer.

[127]  Gabriele Bergers,et al.  Matrix metalloproteinase-9 triggers the angiogenic switch during , 2000 .

[128]  W. Linehan,et al.  Improved detection of germline mutations in the von Hippel‐Lindau disease tumor suppressor gene , 1998, Human mutation.

[129]  W. Linehan,et al.  Germline mutations in the Von Hippel‐Lindau disease (VHL) gene in families from North America, Europe, and Japan , 1996, Human mutation.