The electrokinetics of porous colloidal particles

Theoretical models for the electrokinetics of weakly permeable porous colloidal particles are absent from the literature. The understanding of this topic will be advanced through a systematic analysis of the standard electrokinetic equations, resulting in a theory for the electrophoretic mobility of weakly permeable porous colloidal particles. The standard electrokinetic equations are employed to model the flux of solvent and ions outside the porous particle. To be consistent with this approach, the flux of solvent and ions in the pores must also be governed by the standard electrokinetic equations. However, in practice, only transport phenomena on the particle scale are observed and it is sufficient for information regarding pore-scale behaviour to be retained purely in the form of averaged quantities. To complete the theoretical description, the standard electrokinetic equations outside the particle must be coupled to particlescale transport equations inside the particle via boundary conditions at the porous/free-fluid interface. It has been shown experimentally and theoretically for coupled Stokes and Darcy flows, that the correct interfacial boundary condition for the tangential external flow is given by the Beavers-Joseph-Saffman (BJS) condition. The effect of the BJS boundary condition on the hydrodynamic drag on an oscillating porous particle is investigated. It is found that the particle may be regarded as impermeable with a slip length independent of frequency, and the resulting drag is significantly reduced in comparison with an equivalent impermeable particle that does not exhibit a slip length. The transport of a general electrolyte solution through a rigid porous body subjected to a static (d.c.) electric field is studied. The pore-scale

[1]  J. Beattie,et al.  Electroacoustic and dielectric response of suspensions of zeolites A and Y , 2003 .

[2]  U. Hornung Homogenization and porous media , 1996 .

[3]  R. J. Hunter,et al.  Zeta Potential of Highly Charged Thin Double-Layer Systems. , 2001, Journal of colloid and interface science.

[4]  H. Ohshima,et al.  Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions , 1983 .

[5]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[6]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[7]  J. Hermans Sedimentation and electrophoresis of porous spheres , 1955 .

[8]  L. White,et al.  The dynamic double layer Part 1Theory of a mobile Stern layer , 1998 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  R. E G H A N Transport in polymer-gel composites : Theoretical methodology and response to an electric field , 2008 .

[11]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[12]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[13]  Willi Jäger,et al.  Asymptotic Analysis of the Laminar Viscous Flow Over a Porous Bed , 2000, SIAM J. Sci. Comput..

[14]  C. P. Gupta,et al.  Existence theorems for nonlinear noncoercive operator equations and nonlinear elliptic boundary value problems , 1976 .

[15]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[16]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[17]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[18]  Eduardo Casas,et al.  A Green's formula for quasilinear elliptic operators , 1989 .

[19]  R. Wunderlich The effects of surface structure on the electrophoretic mobilities of large particles , 1982 .

[20]  R. Mauri,et al.  Boundary conditions for darcy's flow through porous media , 1983 .

[21]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[22]  Hinch Perturbation Methods , 1991 .

[23]  J. Higdon,et al.  On the calculation of Stokes' flow past porous particles , 1981 .

[24]  R. W. O'Brien,et al.  The electroacoustic equations for a colloidal suspension , 1990, Journal of Fluid Mechanics.

[25]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[26]  J. Thovert,et al.  Electroosmotic Phenomena in Porous Media , 1996 .

[27]  Hans-Jürgen Butt,et al.  Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects. , 2002, Physical review letters.

[28]  Eberhard Zeidler,et al.  Applied Functional Analysis , 1995 .

[29]  L. White,et al.  Effects of stern-layer conductance on electrokinetic transport properties of colloidal particles , 1990 .

[30]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[31]  W. Sutherland,et al.  LXXV. A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin , 1905 .

[32]  F. Booth,et al.  The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  Joseph W. Jerome,et al.  CONSISTENCY OF SEMICONDUCTOR MODELING: AN EXISTENCE/STABILITY ANALYSIS FOR THE STATIONARY VAN ROOSBROECK SYSTEM* , 1985 .

[34]  R. W. O'Brien The Dynamic Mobility of a Porous Particle , 1995 .

[35]  S. Dukhin,et al.  Nonequilibrium electric surface phenomena and extended electrokinetic characterization of particles , 2002 .

[36]  P. Adler Macroscopic Electroosmotic Coupling Coefficient in Random Porous Media , 2001 .

[37]  R. W. O'Brien,et al.  Electroacoustic Determination of Particle Size and Zeta Potential , 1995 .

[38]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[39]  R. W. O'Brien,et al.  The electrophoresis of a spheroid with a thin double layer , 1988 .

[40]  M. Teubner The motion of charged colloidal particles in electric fields , 1982 .

[41]  C. P. Gupta Perturbations of second order linear elliptic problems by unbounded nonlinearities , 1982 .

[42]  Shouchuan Hu,et al.  Nonlinear Elliptic Problems of Neumann-Type , 2000, Period. Math. Hung..

[43]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[44]  H. Ohshima Approximate expression for the electrophoretic mobility of a spherical colloidal particle in a solution of general electrolytes , 2005 .

[45]  D. Williams,et al.  Shear-dependent boundary slip in an aqueous Newtonian liquid. , 2001, Physical review letters.

[46]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[47]  Antonio Fasano,et al.  Filtration in Porous Media and Industrial Application , 2001 .

[48]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[49]  Edwin Hewitt,et al.  Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .

[50]  F. Papalini A quasilinear Neumann problem with discontinuous nonlinearity , 2003 .

[51]  G. Sandrakov Homogenization of non-stationary Stokes equations with viscosity in a perforated domain , 1997 .

[52]  Willi Jäger,et al.  Couette Flows over a Rough Boundary and Drag Reduction , 2001 .

[53]  W. T. Perrins,et al.  The electrical conductivity of a porous plug , 1984 .

[54]  R. J. Hunter Foundations of Colloid Science , 1987 .

[55]  J. Mawhin,et al.  Variational methods and semi-linear elliptic equations , 1986 .

[56]  Schwartz,et al.  New pore-size parameter characterizing transport in porous media. , 1986, Physical review letters.

[57]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[58]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[59]  J. Thovert,et al.  Electro‐osmotic coupling in compact clays , 2004 .

[60]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[61]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[62]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[63]  I. P. Jones,et al.  Low Reynolds number flow past a porous spherical shell , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  Michael Holst,et al.  Multilevel Methods for the Poisson-Boltzmann Equation , 1993 .

[65]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[66]  D. Saville,et al.  `Exact' solutions of the full electrokinetic model for soft spherical colloids: Electrophoretic mobility , 2005, cond-mat/0505109.

[67]  Hiroyuki Ohshima,et al.  Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle , 1982 .

[68]  A. Mikelić,et al.  Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary , 1991 .

[69]  R. J. Hunter,et al.  The electrophoretic mobility of large colloidal particles , 1981 .

[70]  M. Murad,et al.  Macroscopic Behavior of Swelling Porous Media Derived from Micromechanical Analysis , 2003 .

[71]  Ludwig C. Nitsche,et al.  Eulerian kinematics of flow through spatially periodic models of porous media , 1989 .

[72]  J. Webb Boundary Value Problems for Strongly Nonlinear Elliptic Equations , 1980 .

[73]  A. Revil,et al.  Constitutive equations for ionic transport in porous shales , 2004 .

[74]  P. Adler,et al.  Coupled Transports in Heterogeneous Media , 2001 .

[75]  R. W. O'Brien The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .

[76]  Pride,et al.  Governing equations for the coupled electromagnetics and acoustics of porous media. , 1994, Physical review. B, Condensed matter.

[77]  D. Saville,et al.  The interpretation of dielectric response measurements on colloidal dispersions using the dynamic Stern layer model , 1993 .

[78]  R. W. O'Brien,et al.  A new formula for the dynamic mobility in a concentrated colloid , 2003 .

[79]  Geoffrey Ingram Taylor,et al.  A model for the boundary condition of a porous material. Part 1 , 1971, Journal of Fluid Mechanics.

[80]  Z. Feng,et al.  Motion of a permeable sphere at finite but small Reynolds numbers , 1998 .

[81]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[82]  P. Hess A strongly nonlinear elliptic boundary value problem , 1973 .

[83]  B. Bijsterbosch,et al.  Electrical conductivity of dilute and concentrated aqueous dispersions of monodisperse polystyrene particles. Influence of surface conductance and double-layer polarization , 1980 .

[84]  J. Overbeek,et al.  Electrophoresis of polyelectrolytes with partial drainage , 1956 .

[85]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[86]  Jolanta Lewandowska,et al.  On the cross-effects of coupled macroscopic transport equations in porous media , 1994 .

[87]  D. Edwards Charge transport through a spatially periodic porous medium : electrokinetic and convective dispersion phenomena , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[88]  B. Bijsterbosch,et al.  Electrokinetic measurements on concentrated polystyrene dispersions and their theoretical interpretation , 1983 .

[89]  Márcio A. Murad,et al.  Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure , 2002 .

[90]  Eberhard Zeidler,et al.  Applied Functional Analysis: Main Principles and Their Applications , 1995 .

[91]  Reghan J. Hill,et al.  Electrophoresis of spherical polymer-coated colloidal particles , 2003 .

[92]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[93]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[94]  R. W. O'Brien,et al.  Electro-acoustic effects in a dilute suspension of spherical particles , 1988, Journal of Fluid Mechanics.

[95]  S. Kozlov,et al.  DARCY EQUATION FOR RANDOM POROUS MEDIA , 1996 .

[96]  Ohshima On the General Expression for the Electrophoretic Mobility of a Soft Particle. , 2000, Journal of colloid and interface science.

[97]  C. Bender,et al.  Matched Asymptotic Expansions: Ideas and Techniques , 1988 .

[98]  Charles Swartz,et al.  Measure, Integration and Function Spaces , 1994 .

[99]  C. Zukoski,et al.  The interpretation of electrokinetic measurements using a dynamic model of the stern layer , 1986 .

[100]  F. Browder Nonlinear elliptic boundary value problems , 1963 .

[101]  H. Ohshima Electrophoretic mobility of soft particles , 1995 .

[102]  Robert H. Davis,et al.  Flow through beds of porous particles , 1993 .

[103]  Adler,et al.  Electroosmotic Phenomena in Fractures. , 2000, Journal of colloid and interface science.

[104]  S. Richardson,et al.  A model for the boundary condition of a porous material. Part 2 , 1971, Journal of Fluid Mechanics.

[105]  D. C. Henry The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .

[106]  Ian Jones A theory of electrophoresis of large colloid particles with adsorbed polyelectrolyte , 1979 .

[107]  Transport in polymer-gel composites: response to a bulk concentration gradient. , 2005, The Journal of chemical physics.

[108]  P. Debye,et al.  Intrinsic Viscosity, Diffusion, and Sedimentation Rate of Polymers in Solution , 1948 .

[109]  Saville Electrokinetic Properties of Fuzzy Colloidal Particles. , 2000, Journal of colloid and interface science.

[110]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[112]  N. Epstein,et al.  Creeping flow relative to permeable spheres , 1973 .

[113]  E. Garboczi,et al.  Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media. , 1992, Physical review. B, Condensed matter.

[114]  R. W. O'Brien,et al.  The high-frequency dielectric dispersion of a colloid , 1986 .

[115]  Ohshima Dynamic Electrophoretic Mobility of a Soft Particle. , 2001, Journal of colloid and interface science.