3.3 – Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements

This chapter is in part an update of a previous, more abbreviated review (Hofmann, 1997). It covers the subject in greater depth, and it reflects some significant changes in the author's views since the writing of the earlier paper. In particular, the spatial range of equilibrium attained during partial melting may be much smaller than previously thought, because of new experimental diffusion data and new results from natural settings. Also, the question of ‘layered’ versus ‘whole-mantle’ convection, including the depth of subduction and of the origin of plumes, has to be reassessed in light of the recent breakthroughs achieved by seismic mantle tomography. As the spatial resolution of seismic tomography and the pressure range, accuracy, and precision of experimental data on melting relations, phase transformations, and kinetics continue to improve, the interaction between these disciplines and geochemistry sensu stricto will continue to improve our understanding of what is actually going on in the mantle. The established views of the mantle being engaged in simple two- or single-layer convection are becoming obsolete. In many ways, we are just at the beginning of this new phase of mantle geology, geophysics, and geochemistry.

[1]  M. Chaussidon,et al.  Enriched and depleted primitive melts included in olivine from Icelandic tholeiites : Origin by continuous melting of a single mantle column , 1995 .

[2]  G. Hanson Geochemical evolution of the suboceanic mantle , 1977, Journal of the Geological Society.

[3]  R. Vollmer Rb - Sr and U - Th - Pb systematics of alkaline rocks: the alkaline rocks from Italy , 1976 .

[4]  K. Jochum Antimony in Mantle-Derived Rocks: Constraints on Earth Evolution from Moderately Siderophile Elements , 1994 .

[5]  E. Hauri SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions , 2002 .

[6]  J. V. Van Orman,et al.  Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates , 2001 .

[7]  A. Hofmann,et al.  Mantle plumes and episodic crustal growth , 1994, Nature.

[8]  J. Schilling,et al.  MORB melting processes beneath the southern Mid-Atlantic Ridge (40–55°S): a role for mantle plume-derived pyroxenite , 2002 .

[9]  S. M. Haines,et al.  The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs - A case for bi-directional transport , 1988 .

[10]  C. Hedge,et al.  Radiogenic Strontium-87 as an Index of Geologic Processes , 1963, Science.

[11]  B. Wood,et al.  Prediction of crystal–melt partition coefficients from elastic moduli , 1994, Nature.

[12]  C. Langmuir,et al.  Sr‐Nd‐Pb‐Hf Isotope Results from ODP Leg 187: Evidence for Mantle Dynamics of the Australian‐Antarctic Discordance and Origin of the Indian MORB Source , 2002 .

[13]  J. Morgan,et al.  190Pt–186Os and 187Re–187Os systematics of abyssal peridotites , 2000 .

[14]  A. Hofmann,et al.  Origin of MORB enrichment and relative trace element compatibilities along the Mid‐Atlantic Ridge between 10° and 24°N , 2006 .

[15]  A. Hofmann,et al.  The argon constraints on mantle structure , 1996 .

[16]  P. Tackley Strong heterogeneity caused by deep mantle layering , 2002 .

[17]  S. Hart,et al.  Mantle Plumes and Entrainment: Isotopic Evidence , 1992, Science.

[18]  A. Hofmann,et al.  Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites , 2001, Nature.

[19]  A. Hofmann,et al.  Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution , 1982, Nature.

[20]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[21]  S. Morse Strontium Isotope Fractionation in the Kiglapait Intrusion , 1983, Science.

[22]  A. Sobolev,et al.  An olivine-free mantle source of Hawaiian shield basalts , 2005, Nature.

[23]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[24]  P. W. Gast Limitations on the composition of the upper mantle , 1960 .

[25]  S. Milner,et al.  Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia: constraints on the composition of the early Tristan plume and the origin of the EM 1 mantle component , 1996 .

[26]  E. Lewin,et al.  Differences between oceanic basalts by multitrace element ratio topology , 1995 .

[27]  C. Allègre Comportement Des Systemes U-Th-Pb Dans Le Manteau Superieur Et Modele d'Evolution De Ce Dernier Au Cours Des Temps Geologiques , 1968 .

[28]  R. Hilst,et al.  New mantle convection model may reconcile conflicting evidence , 1999 .

[29]  M. Roy‐Barman,et al.  187Os186Os ratios of mid-ocean ridge basalts and abyssal peridotites , 1994 .

[30]  D. DePaolo Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes , 1980 .

[31]  F. Albarède,et al.  A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites , 2002, Nature.

[32]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[33]  W. McDonough,et al.  The composition of the Earth , 1995 .

[34]  G. Tilton,et al.  Isotopic Composition of Lead and Strontium from Ascension and Gough Islands , 1964, Science.

[35]  R. Thompson,et al.  An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[36]  A. Hofmann,et al.  Tin in mantle-derived rocks: Constraints on Earth evolution , 1993 .

[37]  A. D. Saunders,et al.  Origin of MORB and Chemically-Depleted Mantle Reservoirs: Trace Element Constraints , 1988 .

[38]  Barth,et al.  Rutile-bearing refractory eclogites: missing link between continents and depleted mantle , 2000, Science.

[39]  B. Dupré,et al.  Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena , 1983, Nature.

[40]  J. Morgan Isotope topology of individual hotspot basalt arrays: Mixing curves or melt extraction trajectories? , 2000 .

[41]  P. W. Gast Trace element fractionation and the origin of tholeiitic and alkaline magma types , 1968 .

[42]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[43]  F. Albarède,et al.  Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system , 1999 .

[44]  P. V. Keken,et al.  Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution , 1998 .

[45]  S. Goldstein,et al.  Limits on chemical and convective isolation in the Earth's interior , 1989 .

[46]  A. Hofmann,et al.  Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle , 1984 .

[47]  G. Wasserburg,et al.  Models of earth structure inferred from neodymium and strontium isotopic abundances. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. Jacobsen,et al.  The Mean Age of Mantle and Crustal Reservoirs for the Planet Mars , 1979 .

[49]  Marie C. Johnson,et al.  Dehydration and melting experiments constrain the fate of subducted sediments , 2000 .

[50]  Donald L. Turcotte,et al.  Implications of a two-component marble-cake mantle , 1986, Nature.

[51]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[52]  G. Wasserburg,et al.  Negative thermal ion mass spectrometry of osmium, rhenium, and iridium , 1991 .

[53]  D. Wood A variably veined suboceanic upper mantle—Genetic significance for mid-ocean ridge basalts from geochemical evidence , 1979 .

[54]  F. Albarède,et al.  Cryptic striations in the upper mantle revealed by hafnium isotopes in southeast Indian ridge basalts , 2006, Nature.

[55]  P. Tackley,et al.  Mantle convection and plate tectonics: toward an integrated physical and chemical theory , 2000, Science.

[56]  C. Devey,et al.  The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot , 2002 .

[57]  C. Langmuir,et al.  Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents , 1994, Nature.

[58]  K. Sims,et al.  INFERENCES ABOUT MANTLE MAGMA SOURCES FROM INCOMPATIBLE ELEMENT CONCENTRATION RATIOS IN OCEANIC BASALTS , 1997 .

[59]  Hart,et al.  Pb isotopic variability in melt inclusions from oceanic island basalts, polynesia , 1998, Science.

[60]  H. Dick,et al.  Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites , 1990 .

[61]  S. Hart,et al.  Basalts from Iceland and Along the Reykjanes Ridge: Sr Isotope Geochemistry , 1973 .

[62]  M. Rehkämper,et al.  THE DISTRIBUTION AND BEHAVIOUR OF RE AND OS AMONGST MANTLE MINERALS AND THE CONSEQUENCES OF METASOMATISM AND MELTING ON MANTLE LITHOLOGIES , 1999 .

[63]  M. Hirschmann,et al.  A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB , 1996 .

[64]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[65]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[66]  C. Langmuir,et al.  Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance , 1988, Nature.

[67]  A. Sobolev,et al.  Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge , 1993, Nature.

[68]  B. Kamber,et al.  A refined solution to the first terrestrial Pb-isotope paradox , 2003 .

[69]  S. Hart K, Rb, Cs, Sr and Ba contents and Sr isotope ratios of ocean floor basalts , 1971, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[70]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[71]  F. Albarède,et al.  A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion , 1990 .

[72]  A. Hofmann,et al.  Early crust on top of the Earth''s core: Physics of the Earth and Planetary Interiors , 2005 .

[73]  A. Hofmann,et al.  Recycled ocean crust and sediment in Indian Ocean MORB , 1997 .

[74]  S. McLennan,et al.  Pb isotope compositions of modern deep sea turbidites , 2001 .

[75]  M. Willbold,et al.  Trace element composition of mantle end‐members: Implications for recycling of oceanic and upper and lower continental crust , 2006 .

[76]  J. Mahoney,et al.  Madagascar basalts: tracking oceanic and continental sources , 1991 .

[77]  P. Hamilton,et al.  Variations in143Nd/144Nd and87Sr/86Sr ratios in oceanic basalts , 1977 .

[78]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[79]  N. Sleep Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes? , 1984 .

[80]  B. Dupré,et al.  Variability; a new parameter which emphasizes the limits of extended rare earth diagrams , 1994 .

[81]  P. Hamilton,et al.  Geochemical modeling of mantle differentiation and crustal growth , 1979 .

[82]  J. Schilling Iceland Mantle Plume: Geochemical Study of Reykjanes Ridge , 1973, Nature.

[83]  S. Galer,et al.  Residence time of thorium, uranium and lead in the mantle with implications for mantle convection , 1985, Nature.

[84]  C. Allègre LIMITATION ON THE MASS EXCHANGE BETWEEN THE UPPER AND LOWER MANTLE : THE EVOLVING CONVECTION REGIME OF THE EARTH , 1997 .

[85]  M. O'hara,et al.  Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber , 1981, Journal of the Geological Society.

[86]  C. Hawkesworth,et al.  Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts , 1986, Nature.

[87]  B. Hanan,et al.  Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge , 2004, Nature.

[88]  E. M. Klein,et al.  Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge , 1995, Nature.

[89]  W. White,et al.  The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling , 1989 .

[90]  R. Armstrong,et al.  Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[91]  A. Hofmann,et al.  Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth , 1992 .

[92]  M. Reid,et al.  Petrogenesis of alkaline basalts from Socorro Island, Mexico: trace element evidence for contamination of ocean island basalt in the shallow ocean crust , 1995 .

[93]  K. Mezger,et al.  Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry , 2002, Nature.

[94]  Candace E Martin Osmium isotopic characteristics of mantle-derived rocks , 1991 .

[95]  B. Dupré,et al.  Chemical aspects of the formation of the core , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[96]  H. G. David,et al.  Reactions between eclogite and peridotite; mantle refertilisation by subduction of oceanic crust , 1998 .

[97]  R. W. Griffiths,et al.  Stirring and structure in mantle starting plumes , 1990 .

[98]  A. Hofmann,et al.  K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle , 1983, Nature.

[99]  K. Haase The relationship between the age of the lithosphere and the composition of oceanic magmas: Constraints on partial melting, mantle sources and the thermal structure of the plates , 1996 .

[100]  J. W. Winchester,et al.  Rare-earth fractionation and magmatic processes. , 1967 .

[101]  G. Faure Principles of isotope geology , 1977 .

[102]  T. Walczyk,et al.  Osmium isotope ratio determinations by negative thermal ionization mass spectrometry , 1991 .

[103]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[104]  A. Sobolev,et al.  Recycled oceanic crust observed in ‘ghost plagioclase’ within the source of Mauna Loa lavas , 2000, Nature.

[105]  J. W. Winchester,et al.  Rare earth contribution to the origin of Hawaiian lavas , 1969 .

[106]  R. Pankhurst,et al.  Petrogenetic Significance of Isotope and Trace Element Variations in Volcanic Rocks From the Mid-Atlantic , 1974 .

[107]  J. Kramers,et al.  Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust , 1997 .

[108]  W. White Sources of oceanic basalts: Radiogenic isotopic evidence , 1985 .

[109]  D. Shaw Trace element fractionation during anatexis , 1970 .

[110]  D. DePaolo The mean life of continents: Estimates of continent recycling rates from Nd and Hf isotopic data and implications for mantle structure , 1983 .

[111]  R. Hori,et al.  A model of ocean-crust accretion for the Superior province, Canada , 1993 .

[112]  A. Hofmann,et al.  Ba, Rb and Cs in the Earth's Mantle , 1983 .

[113]  A. Hofmann,et al.  An assessment of local and regional isotopic equilibrium in the mantle , 1978 .

[114]  A. Hofmann,et al.  Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma , 2003 .

[115]  A. Hofmann,et al.  Oceanic plateau model for continental crustal growth in the Archaean: A case study from the Kostomuksha greenstone belt, NW Baltic Shield , 1998 .

[116]  G. Wasserburg,et al.  Nd isotopic variations and petrogenetic models , 1976 .

[117]  C. Langmuir,et al.  Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics , 2004 .

[118]  A. Hofmann,et al.  himu-em: The French Polynesian connection , 1992 .

[119]  C. Hawkesworth,et al.  143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle , 1979, Nature.

[120]  P. V. Keken,et al.  A dynamical investigation of the heat and helium imbalance: Earth and Planetary Science Letters , 2001 .

[121]  N. Shimizu,et al.  143Nd/146Nd, a natural tracer: an application to oceanic basalts* , 1976 .

[122]  B. Peucker‐Ehrenbrink,et al.  Hydrothermal lead transfer from mantle to continental crust: the role of metalliferous sediments , 1994 .

[123]  C. Hedge,et al.  Potassium, Rubidium, Strontium, Thorium, Uranium, and the Ratio of Strontium-87 to Strontium-86 in Oceanic Tholeiitic Basalt , 1965, Science.

[124]  T. Elliott,et al.  EXPLORING THE KAPPA CONUNDRUM : THE ROLE OF RECYCLING IN THE LEAD ISOTOPE EVOLUTION OF THE MANTLE , 1999 .

[125]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[126]  Albrecht W. Hofmann,et al.  Mantle plumes from ancient oceanic crust , 1982 .

[127]  D. Porcelli,et al.  The core as a possible source of mantle helium: Earth and Planetary Science Letters , 2001 .

[128]  G. Hanson,et al.  Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites , 1975 .

[129]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[130]  E. Widom,et al.  Os isotope systematics in the Azores: implications for mantle plume sources , 1996 .

[131]  F. Albarède,et al.  Evidence from Sardinian basalt geochemistry for recycling of plume heads into the Earth's mantle , 2000, Nature.

[132]  K. Jochum,et al.  The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies , 1986 .

[133]  M. O'hara Non-Primary Magmas and Dubious Mantle Plume beneath Iceland , 1973, Nature.

[134]  G. Masters,et al.  Global P and PP traveltime tomography: rays versus waves , 2004 .

[135]  S. Goldstein,et al.  The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb , 1990 .

[136]  C. G. Chase Oceanic island Pb: Two-stage histories and mantle evolution , 1981 .

[137]  P. Schiano,et al.  Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle , 1997 .

[138]  J. Woodhead Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook—Austral hotspot , 1996 .

[139]  R. Coleman,et al.  Re–Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth's upper mantle , 2002, Nature.

[140]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[141]  W. White,et al.  The nature and origin of geochemical variation in Mid-Atlantic Ridge basalts from the Central North Atlantic , 1978 .

[142]  J. Kramers,et al.  A chemical Earth model with whole mantle convection: The importance of a core-mantle boundary layer (D'') and its early formation , 2006 .

[143]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[144]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[145]  A. Hofmann Geochemistry and models of mantle circulation , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[146]  F. Albarède,et al.  Hf isotope evidence for pelagic sediments in the source of hawaiian basalts , 1999, Science.

[147]  D. Clague,et al.  Constraints on the Source Components of Lavas Forming the Hawaiian North Arch and Honolulu Volcanics , 2003 .

[148]  S. Goldstein,et al.  Influence of Accretion on Lead in the Earth , 2013 .

[149]  J. Ludden,et al.  Archean continental assembly in the southeastern Superior Province of Canada , 1999 .

[150]  A. Hofmann,et al.  Segregation of subducted oceanic crust in the convecting mantle , 1994 .

[151]  G. Davies Stirring geochemistry in mantle convection models with stiff plates and slabs , 2002 .

[152]  D. McKenzie,et al.  Mantle reservoirs and ocean island basalts , 1983, Nature.

[153]  S. Hart,et al.  Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, II. Numerical experiments and discussion , 1983 .

[154]  S. Goldstein,et al.  Hydration and dehydration of oceanic crust controls Pb evolution in the mantle , 1995 .

[155]  B. Wood,et al.  The Earth's ‘missing’ niobium may be in the core , 2001, Nature.

[156]  L. Reisberg,et al.  Os isotopic systematics of the MORB mantle: results from altered abyssal peridotites , 1995 .

[157]  B. Legras,et al.  Mixing and deformations in mantle plumes , 2002 .

[158]  W. White 238U/204Pb in MORB and open system evolution of the depleted mantle , 1993 .

[159]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[160]  Brian M. Smith,et al.  Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites417/418 , 1995 .

[161]  Walter H. F. Smith,et al.  Observational hints for a plume‐fed, suboceanic asthenosphere and its role in mantle convection , 1995 .

[162]  W. Griffin,et al.  New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides , 2002 .

[163]  J. Dawson,et al.  The distribution and behaviour of rhenium and osmium amongst mantle minerals and the age of the lithospheric mantle beneath Tanzania , 2000 .

[164]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[165]  G. Faure,et al.  Radiogenic strontium‐87 model of continent formation , 1962 .

[166]  R. Duncan,et al.  Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling , 2013 .

[167]  K. Grönvold,et al.  Source enrichment processes responsible for isotopic anomalies in oceanic island basalts , 2004 .

[168]  W. J. Morgan,et al.  Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding , 1999 .

[169]  R. Pankhurst Open system crystal fractionation and incompatible element variation in basalts , 1977, Nature.

[170]  J. H. Natland,et al.  Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas , 1992 .

[171]  R. Carlson,et al.  142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth , 2005, Science.

[172]  G. Davies Earth's neodymium budget and structure and evolution of the mantle , 1981, Nature.

[173]  J. Mahoney,et al.  Resolving an isotopic boundary within the Australian-Antarctic discordance , 1992 .

[174]  A. Halliday,et al.  Hafnium–tungsten chronometry and the timing of terrestrial core formation , 1995, Nature.

[175]  B. Hanan,et al.  Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes , 1996, Science.