Funicularity through External Posttensioning: Design Philosophy and Computational Tool

AbstractFunicular geometries, which follow the idealized shapes of hanging chains under a given loading, are recognized as materially efficient structural solutions because they exhibit no bending under design loading, usually self-weight. However, there are circumstances in which nonstructural conditions make a funicular geometry difficult or impossible. This paper presents a new design philosophy, based on graphic statics, that shows how bending moments in a nonfunicular two-dimensional curved geometry can be eliminated by adding forces through an external posttensioning system. An interactive parametric tool is introduced for finding the layout of a posttensioning tendon for any structural geometry. The effectiveness of this approach is shown with several new design proposals.

[1]  Fritz Leonhardt,et al.  Prestressed concrete : design and construction , 1964 .

[2]  Jörg Schlaich,et al.  The Art of Structural Engineering: The Work of Jörg Schlaich and his Team (Holgate, A.) , 1998 .

[3]  J. Ochsendorf,et al.  As Hangs the Flexible Line: Equilibrium of Masonry Arches , 2006 .

[4]  Philippe Block,et al.  Real-time limit analysis of vaulted masonry buildings , 2006 .

[5]  Toni Kotnik,et al.  Geometry of Structural Form , 2010, AAG.

[6]  Aurelio Muttoni Brücken mit einem innovativen statischen System , 1997 .

[7]  Fritz Leonhardt Brücken : Ästhetik und Gestaltung = Bridges : aesthetics and design , 1984 .

[8]  James E. Ambrose Design of building trusses , 1994 .

[9]  Ned H. Burns,et al.  Design of Prestressed Concrete Structures , 1963 .

[10]  Jiri Strasky The power of prestressing , 2003 .

[11]  Wolfe,et al.  Graphical Analysis; A Text Book on Graphic Statics , 2010 .

[12]  Santiago Sánchez-Cervera Huerta,et al.  The Analysis of Masonry Architecture: A Historical Approach , 2008 .

[13]  Lauren L. Beghini,et al.  Structural optimization using graphic statics , 2014 .

[14]  Lauren L. Beghini,et al.  Maxwell’s reciprocal diagrams and discrete Michell frames , 2013 .

[15]  John Breen SP-120: External Prestressing in Bridges , 1990 .

[16]  Corentin Fivet,et al.  Constraint-Based Graphic Statics : New paradigms of computer-aided structural equilibrium design , 2013 .

[17]  Corentin Fivet,et al.  Robert Maillart's key methods from the Salginatobel bridge design process (1928) , 2012 .

[18]  Aurelio Muttoni,et al.  Concrete shells - towards efficient structures: construction of an ellipsoidal concrete shell in Switzerland , 2013 .

[19]  Michele Fabio Granata,et al.  Conceptual design of prestressed slab bridges through one-way flexural load balancing , 2013 .

[20]  Ieva Misiūnaitė Structural Behaviour and Stability of Steel Beam-Column Elements in Under-Deck Cable-Stayed Bridge , 2013 .

[21]  Ana María,et al.  Puentes atirantados no convencionales , 2005 .

[22]  Philippe Block Equilibrium systems Studies in Masonry Structure , 2005 .

[23]  Michael Lane,et al.  Introduction to structuralism , 1970 .

[24]  Paul Andersen,et al.  Introduction to structural mechanics , 1960 .

[25]  Philippe Block,et al.  Thrust Network Analysis : exploring three-dimensional equilibrium , 2009 .

[26]  Ana M. Ruiz-Teran Unconventional cable-stayed bridges: structural behaviour and design criteria , 2010 .

[27]  Hans Straub,et al.  A History of Civil Engineering: An Outline from Ancient to Modern Times , 1964 .

[28]  Leonardo Todisco,et al.  An integrated approach to conceptual design of arch bridges with curved deck , 2014 .

[29]  Corentin Fivet,et al.  A fully geometric approach for interactive constraint-based structural equilibrium design , 2015, Comput. Aided Des..

[30]  Peter Marti,et al.  Robert Maillart's curved concrete arch bridges , 1997 .

[31]  G. Huber,et al.  Skisprungschanze "Bergisel" ‐ Ein neues Wahrzeichen von Innsbruck , 2002 .

[32]  Angel C. Aparicio,et al.  Two new types of bridges: under-deck cable-stayed bridges and combined cable-stayed bridges — the state of the art , 2007 .