The role of microglia and myeloid immune cells in acute cerebral ischemia

The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke.

[1]  C. Iadecola,et al.  Neurovascular regulation in the ischemic brain. , 2015, Antioxidants & redox signaling.

[2]  C. Iadecola,et al.  Inducible Nitric Oxide Synthase in Neutrophils and Endothelium Contributes to Ischemic Brain Injury in Mice , 2014, The Journal of Immunology.

[3]  C. Limatola,et al.  Modulating neurotoxicity through CX3CL1/CX3CR1 signaling , 2014, Front. Cell. Neurosci..

[4]  S. Goerdt,et al.  Macrophage activation and polarization: nomenclature and experimental guidelines. , 2014, Immunity.

[5]  T. Arumugam,et al.  Role of CCR2 in Inflammatory Conditions of the Central Nervous System , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  N. Chen,et al.  Neutralization of chemokine-like factor 1, a novel C-C chemokine, protects against focal cerebral ischemia by inhibiting neutrophil infiltration via MAPK pathways in rats , 2014, Journal of Neuroinflammation.

[7]  F. Ginhoux,et al.  Monocytes and macrophages: developmental pathways and tissue homeostasis , 2014, Nature Reviews Immunology.

[8]  Sunghee Cho,et al.  Role of Spleen-Derived Monocytes/Macrophages in Acute Ischemic Brain Injury , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  Marco Prinz,et al.  Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease , 2014, Nature Reviews Neuroscience.

[10]  Jean-Philippe Michaud,et al.  The Impact of Ly6Clow Monocytes after Cerebral Hypoxia-Ischemia in Adult Mice , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[12]  C. Iadecola,et al.  Immune mechanisms in cerebral ischemic tolerance , 2014, Front. Neurosci..

[13]  T. Arumugam,et al.  Immune Cell Infiltration in Malignant Middle Cerebral Artery Infarction: Comparison with Transient Cerebral Ischemia , 2014, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  R. Weissleder,et al.  Imaging macrophages with nanoparticles. , 2014, Nature materials.

[15]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[16]  A. Vandenbark,et al.  Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice , 2013, Metabolic Brain Disease.

[17]  F. Shi,et al.  CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke , 2014, Journal of Neuroinflammation.

[18]  Hong Wang,et al.  Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases , 2014, Biomarker Research.

[19]  J. Frame,et al.  Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. , 2013, Blood cells, molecules & diseases.

[20]  M. A. Moro,et al.  N2 Neutrophils, Novel Players in Brain Inflammation After Stroke: Modulation by the PPAR&ggr; Agonist Rosiglitazone , 2013, Stroke.

[21]  Shengxiang Zhang,et al.  Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. , 2013, Brain : a journal of neurology.

[22]  L. Sansing,et al.  Microglial Responses after Ischemic Stroke and Intracerebral Hemorrhage , 2013, Clinical & developmental immunology.

[23]  C. Théry,et al.  Phagocytosis executes delayed neuronal death after focal brain ischemia , 2013, Proceedings of the National Academy of Sciences.

[24]  E. Ringelstein,et al.  Granulocyte Colony–Stimulating Factor in Patients With Acute Ischemic Stroke: Results of the AX200 for Ischemic Stroke Trial , 2013, Stroke.

[25]  J. Krijgsveld,et al.  Origin of monocytes and macrophages in a committed progenitor , 2013, Nature Immunology.

[26]  J. Honnorat,et al.  In Vitro and In Vivo Models of Cerebral Ischemia Show Discrepancy in Therapeutic Effects of M2 Macrophages , 2013, PloS one.

[27]  S. Fumagalli,et al.  CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice , 2013, Glia.

[28]  L. McCullough,et al.  Microglia and ischemic stroke: a double-edged sword. , 2013, International journal of physiology, pathophysiology and pharmacology.

[29]  S. Hellwig,et al.  The brain’s best friend: microglial neurotoxicity revisited , 2013, Front. Cell. Neurosci..

[30]  K. Kovács,et al.  The Immune System in Stroke: Clinical Challenges and Their Translation to Experimental Research , 2013, Journal of Neuroimmune Pharmacology.

[31]  Leo M. Carlin,et al.  Nr4a1-Dependent Ly6Clow Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal , 2013, Cell.

[32]  M. Schwartz,et al.  Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair , 2013, Front. Cell. Neurosci..

[33]  S. Rankin,et al.  Regulation of Circulating Neutrophil Numbers under Homeostasis and in Disease , 2013, Journal of Innate Immunity.

[34]  Steffen Jung,et al.  Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. , 2013, Immunity.

[35]  A. Sheikh,et al.  Erratum to “NF-κB Signaling in the Brain of Autistic Subjects” , 2013, Mediators of Inflammation.

[36]  C. Haas,et al.  Bone Marrow Cell Recruitment to the Brain in the Absence of Irradiation or Parabiosis Bias , 2013, PloS one.

[37]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[38]  F. Ginhoux,et al.  Origin and differentiation of microglia , 2013, Front. Cell. Neurosci..

[39]  Sylvie Girard,et al.  Microglia and Macrophages Differentially Modulate Cell Death After Brain Injury Caused by Oxygen-Glucose Deprivation in Organotypic Brain Slices , 2013, Glia.

[40]  Jie-zhong Yu,et al.  Targeting the Shift from M1 to M2 Macrophages in Experimental Autoimmune Encephalomyelitis Mice Treated with Fasudil , 2013, PloS one.

[41]  V. Perry,et al.  Review: Activation patterns of microglia and their identification in the human brain , 2013, Neuropathology and applied neurobiology.

[42]  K. Umegaki,et al.  Pivotal Roles of Monocytes/Macrophages in Stroke , 2013, Mediators of inflammation.

[43]  P. Jakob,et al.  Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. , 2013, Blood.

[44]  H. Neumann,et al.  Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke , 2013, PloS one.

[45]  C. Sommer,et al.  Postischemic Brain Infiltration of Leukocyte Subpopulations Differs among Murine Permanent and Transient Focal Cerebral Ischemia Models , 2013, Brain pathology.

[46]  J. Filosa,et al.  A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion , 2013, Journal of Neuroinflammation.

[47]  M. Endres,et al.  The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury , 2012, Acta Neuropathologica.

[48]  I. Campbell,et al.  Inflammatory monocytes and the pathogenesis of viral encephalitis , 2012, Journal of Neuroinflammation.

[49]  R. Leak,et al.  Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia , 2012, Stroke.

[50]  C. Gerloff,et al.  Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. , 2012, Blood.

[51]  M. Asaduzzaman,et al.  Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo , 2012, Nature Medicine.

[52]  Acute Splenic Irradiation Reduces Brain Injury in the Rat Focal Ischemic Stroke Model , 2012, Translational Stroke Research.

[53]  Martin R. Müller,et al.  Current insights into neutrophil homeostasis , 2012, Annals of the New York Academy of Sciences.

[54]  B. McColl,et al.  Neutrophil Cerebrovascular Transmigration Triggers Rapid Neurotoxicity through Release of Proteases Associated with Decondensed DNA , 2012, The Journal of Immunology.

[55]  Zhi-ren Zhang,et al.  Macrophages in Tumor Microenvironments and the Progression of Tumors , 2012, Clinical & developmental immunology.

[56]  H. Hartung,et al.  Macrophages prevent hemorrhagic infarct transformation in murine stroke models , 2012, Annals of neurology.

[57]  A. Bar-Or,et al.  Comparison of polarization properties of human adult microglia and blood‐derived macrophages , 2012, Glia.

[58]  H. Kamel,et al.  Brain-immune interactions and ischemic stroke: clinical implications. , 2012, Archives of neurology.

[59]  A. Yoshimura,et al.  Post-Ischemic Inflammation in the Brain , 2012, Front. Immun..

[60]  J. Pollard,et al.  A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells , 2012, Science.

[61]  R. Dijkhuizen,et al.  Imaging Neuroinflammation after Stroke: Current Status of Cellular and Molecular MRI Strategies , 2012, Cerebrovascular Diseases.

[62]  Guy C. Brown,et al.  Primary Phagocytosis of Neurons by Inflamed Microglia: Potential Roles in Neurodegeneration , 2012, Front. Pharmacol..

[63]  J. Demengeot,et al.  Regulatory T Cells Accumulate in the Lung Allergic Inflammation and Efficiently Suppress T-Cell Proliferation but Not Th2 Cytokine Production , 2011, Clinical & developmental immunology.

[64]  S. Fumagalli,et al.  Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice , 2011, Journal of Neuroinflammation.

[65]  B. Fredholm,et al.  CX3CL1 Is Neuroprotective in Permanent Focal Cerebral Ischemia in Rodents , 2011, The Journal of Neuroscience.

[66]  M. Wendland,et al.  Microglial Cells Contribute to Endogenous Brain Defenses after Acute Neonatal Focal Stroke , 2011, The Journal of Neuroscience.

[67]  F. Rossi,et al.  Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool , 2011, Nature Neuroscience.

[68]  R. Ransohoff Microglia and monocytes: 'tis plain the twain meet in the brain , 2011, Nature Neuroscience.

[69]  A. Mildner,et al.  Distinct and Non-Redundant Roles of Microglia and Myeloid Subsets in Mouse Models of Alzheimer's Disease , 2011, The Journal of Neuroscience.

[70]  F. Geissmann,et al.  The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C− monocytes , 2011, Nature Immunology.

[71]  S. David,et al.  Repertoire of microglial and macrophage responses after spinal cord injury , 2011, Nature Reviews Neuroscience.

[72]  C. Iadecola,et al.  The immunology of stroke: from mechanisms to translation , 2011, Nature Medicine.

[73]  U. Dirnagl,et al.  Stroke and the immune system: from pathophysiology to new therapeutic strategies , 2011, The Lancet Neurology.

[74]  Adrian F Hernandez,et al.  Timeliness of Tissue-Type Plasminogen Activator Therapy in Acute Ischemic Stroke: Patient Characteristics, Hospital Factors, and Outcomes Associated With Door-to-Needle Times Within 60 Minutes , 2011, Circulation.

[75]  C. Sobey,et al.  Chemokine-related gene expression in the brain following ischemic stroke: No role for CXCR2 in outcome , 2011, Brain Research.

[76]  P. Aljama,et al.  Senescent CD14+CD16+ Monocytes Exhibit Proinflammatory and Proatherosclerotic Activity , 2011, The Journal of Immunology.

[77]  A. Mildner,et al.  Microglia in the CNS: Immigrants from another world , 2011, Glia.

[78]  A. Thiel,et al.  Imaging of Microglia Activation in Stroke , 2011, Stroke.

[79]  Richard B. Banati,et al.  Positron emission tomography imaging of neuroinflammation , 2007, Neurotherapeutics.

[80]  T. Sternsdorf,et al.  subpopulations: a polymerase chain reaction analysis Differential cytokine expression in human blood monocyte , 2011 .

[81]  Sunghee Cho,et al.  A role for spleen monocytes in post-ischemic brain inflammation and injury , 2010, Journal of Neuroinflammation.

[82]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[83]  R. Ransohoff,et al.  Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice , 2010, PloS one.

[84]  Silvano Sozzani,et al.  Nomenclature of monocytes and dendritic cells in blood. , 2010, Blood.

[85]  M. Prinz,et al.  Tickets to the brain: Role of CCR2 and CX3CR1 in myeloid cell entry in the CNS , 2010, Journal of Neuroimmunology.

[86]  N. Rothwell,et al.  Inflammation and brain injury: Acute cerebral ischaemia, peripheral and central inflammation , 2010, Brain, Behavior, and Immunity.

[87]  R. Weissleder,et al.  Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. , 2010, The Journal of clinical investigation.

[88]  B. McColl,et al.  Platelet interleukin-1alpha drives cerebrovascular inflammation. , 2010, Blood.

[89]  Eng H. Lo,et al.  The Science of Stroke: Mechanisms in Search of Treatments , 2010, Neuron.

[90]  D. Granger,et al.  Leukocyte Recruitment and Ischemic Brain Injury , 2010, NeuroMolecular Medicine.

[91]  P. Bath,et al.  Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: A systematic review , 2009, Brain Research Reviews.

[92]  J. Duffield,et al.  Bone Marrow Ly6Chigh Monocytes Are Selectively Recruited to Injured Kidney and Differentiate into Functionally Distinct Populations1 , 2009, The Journal of Immunology.

[93]  E. Ringelstein,et al.  The role of CC chemokine receptor 2 on microglia activation and blood-borne cell recruitment after transient focal cerebral ischemia in mice , 2009, Brain Research.

[94]  A. Mantovani The yin-yang of tumor-associated neutrophils. , 2009, Cancer cell.

[95]  G. Cheng,et al.  Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. , 2009, Cancer cell.

[96]  P. Libby,et al.  Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites , 2009, Science.

[97]  A. Shah,et al.  Neutrophil elastase and neurovascular injury following focal stroke and reperfusion , 2009, Neurobiology of Disease.

[98]  A. Michelucci,et al.  Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-β , 2009, Journal of Neuroimmunology.

[99]  Christian Gerloff,et al.  Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. , 2009, Stroke.

[100]  E. Lo,et al.  CD47 gene knockout protects against transient focal cerebral ischemia in mice , 2009, Experimental Neurology.

[101]  J. Honnorat,et al.  Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. , 2009, Stroke.

[102]  F. Geissmann,et al.  Blood monocytes: development, heterogeneity, and relationship with dendritic cells. , 2009, Annual review of immunology.

[103]  N. Villamor,et al.  Monocyte Subtypes Predict Clinical Course and Prognosis in Human Stroke , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[104]  C. Sommer,et al.  Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke , 2009, Nature Medicine.

[105]  H. Neumann,et al.  Debris clearance by microglia: an essential link between degeneration and regeneration , 2008, Brain : a journal of neurology.

[106]  J. Edwards,et al.  Exploring the full spectrum of macrophage activation , 2008, Nature Reviews Immunology.

[107]  J. Jordán,et al.  Inflammation as therapeutic objective in stroke. , 2008, Current pharmaceutical design.

[108]  K. Ley,et al.  Homeostatic Regulation of Blood Neutrophil Counts , 2008, The Journal of Immunology.

[109]  Z. Környei,et al.  Role of CX3CR1 (Fractalkine Receptor) in Brain Damage and Inflammation Induced by Focal Cerebral Ischemia in Mouse , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[110]  M. Kaste,et al.  Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. , 2008, The New England journal of medicine.

[111]  D. Wraith,et al.  T-helper 1 cells facilitate the entry of T-helper 17 cells to the central nervous system during experimental autoimmune encephalomyelitis , 2008 .

[112]  K. Pennypacker,et al.  The spleen contributes to stroke‐induced neurodegeneration , 2008, Journal of neuroscience research.

[113]  F. Geissmann,et al.  Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T‐cell responses , 2008, Immunology and cell biology.

[114]  E. Brown,et al.  CD47 Deficiency Protects Mice from Lipopolysaccharide-Induced Acute Lung Injury and Escherichia coli Pneumonia1 , 2008, The Journal of Immunology.

[115]  R. Dijkhuizen,et al.  MRI of Monocyte Infiltration in an Animal Model of Neuroinflammation Using SPIO-Labeled Monocytes or Free USPIO , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[116]  Markus Schwaninger,et al.  Improving Outcome after Stroke: Overcoming the Translational Roadblock , 2008, Cerebrovascular Diseases.

[117]  M. Zembala,et al.  Peripheral Blood CD14high CD16+ Monocytes are Main Producers of IL‐10 , 2008, Scandinavian journal of immunology.

[118]  A. Mildner,et al.  Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions , 2007, Nature Neuroscience.

[119]  F. Rossi,et al.  Local self-renewal can sustain CNS microglia maintenance and function throughout adult life , 2007, Nature Neuroscience.

[120]  J. Honnorat,et al.  USPIO-Enhanced MRI of Neuroinflammation at the Sub-Acute Stage of Ischemic Stroke: Preliminary Data , 2007, Cerebrovascular Diseases.

[121]  P. Libby,et al.  The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions , 2007, The Journal of experimental medicine.

[122]  H. Neumann,et al.  Neuronal ‘On’ and ‘Off’ signals control microglia , 2007, Trends in Neurosciences.

[123]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[124]  H. Hartung,et al.  Iron Oxide Particle-Enhanced MRI Suggests Variability of Brain Inflammation at Early Stages After Ischemic Stroke , 2007, Stroke.

[125]  Hans-Christoph Diener,et al.  NXY-059 for the treatment of acute ischemic stroke. , 2007, The New England journal of medicine.

[126]  A. Cumano,et al.  Monitoring of Blood Vessels and Tissues by a Population of Monocytes with Patrolling Behavior , 2007, Science.

[127]  M. Mack,et al.  Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. , 2007, The Journal of clinical investigation.

[128]  H. Neumann,et al.  TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis , 2007, PLoS medicine.

[129]  R. Keep,et al.  Absence of the Chemokine Receptor CCR2 Protects Against Cerebral Ischemia/Reperfusion Injury in Mice , 2007, Stroke.

[130]  L. Ziegler‐Heitbrock,et al.  The CD14+ CD16+ blood monocytes: their role in infection and inflammation , 2007, Journal of leukocyte biology.

[131]  M. Wendland,et al.  Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke , 2007, Journal of neurochemistry.

[132]  P. Libby,et al.  Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. , 2007, The Journal of clinical investigation.

[133]  Ulrich Dirnagl,et al.  Tracking of systemically administered mononuclear cells in the ischemic brain by high-field magnetic resonance imaging , 2006, NeuroImage.

[134]  Á. Chamorro,et al.  Interleukin 10, monocytes and increased risk of early infection in ischaemic stroke , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[135]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[136]  P. Hurn,et al.  Splenic Atrophy in Experimental Stroke Is Accompanied by Increased Regulatory T Cells and Circulating Macrophages1 , 2006, The Journal of Immunology.

[137]  P. Hurn,et al.  Experimental Stroke Induces Massive, Rapid Activation of the Peripheral Immune System , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[138]  F. Rossi,et al.  Origin and distribution of bone marrow‐derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis , 2006, Glia.

[139]  U. Dirnagl Bench to Bedside: The Quest for Quality in Experimental Stroke Research , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[140]  G. Donnan,et al.  1,026 Experimental treatments in acute stroke , 2006, Annals of neurology.

[141]  H. Hara,et al.  Neuroprotective Effect of Recombinant Human Granulocyte Colony-Stimulating Factor in Transient Focal Ischemia of Mice , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[142]  E. Stanley,et al.  Colony-stimulating factor-1 in immunity and inflammation. , 2006, Current opinion in immunology.

[143]  E. Ringelstein,et al.  Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: An investigation using green fluorescent protein transgenic bone marrow chimeric mice , 2005, Experimental Neurology.

[144]  S. Gordon,et al.  Monocyte and macrophage heterogeneity , 2005, Nature Reviews Immunology.

[145]  John Savill,et al.  Resolution of inflammation: the beginning programs the end , 2005, Nature Immunology.

[146]  U. Dirnagl,et al.  Central nervous system injury-induced immune deficiency syndrome , 2005, Nature Reviews Neuroscience.

[147]  N. Rothwell,et al.  A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[148]  H. Lassmann,et al.  CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis: kinetics and cellular origin , 2005, Journal of Neuroinflammation.

[149]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[150]  Xinkang Wang Investigational anti-inflammatory agents for the treatment of ischaemic brain injury , 2005, Expert opinion on investigational drugs.

[151]  Alexander Gerhard,et al.  Evolution of microglial activation in patients after ischemic stroke: a [11C](R)-PK11195 PET study , 2005, NeuroImage.

[152]  Silvano Sozzani,et al.  The chemokine system in diverse forms of macrophage activation and polarization. , 2004, Trends in immunology.

[153]  E. Rushing,et al.  Human cerebral infarct: a proposed histopathologic classification based on 137 cases , 2004, Acta Neuropathologica.

[154]  John H. Zhang,et al.  Platelet–Leukocyte–Endothelial Cell Interactions after Middle Cerebral Artery Occlusion and Reperfusion , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[155]  Andreas Saleh,et al.  In vivo MRI of brain in ̄ ammation in human ischaemic stroke , 2004 .

[156]  N. Van Rooijen,et al.  Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response1 , 2004, The Journal of Immunology.

[157]  U. Dirnagl,et al.  Preventive Antibacterial Treatment Improves the General Medical and Neurological Outcome in a Mouse Model of Stroke , 2003, Stroke.

[158]  Martin Bendszus,et al.  in Vivo Monitoring of Macrophage Infiltration in Experimental Ischemic Brain Lesions by Magnetic Resonance Imaging , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[159]  Andrew P Grieve,et al.  Acute Stroke Therapy by Inhibition of Neutrophils (ASTIN): An Adaptive Dose-Response Study of UK-279,276 in Acute Ischemic Stroke , 2003, Stroke.

[160]  M. Plotkine,et al.  Polymorphonuclear neutrophils contribute to infarction and oxidative stress in the cortex but not in the striatum after ischemia–reperfusion in rats , 2003, Brain Research.

[161]  E. Ringelstein,et al.  Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice , 2003, Experimental Neurology.

[162]  B. Palmier,et al.  Neutrophils do not contribute to infarction, oxidative stress, and NO synthase activity in severe brain ischemia , 2003, Experimental Neurology.

[163]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[164]  M. Yamada,et al.  Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia , 2003, Neuroscience.

[165]  J. Schwab,et al.  Infiltrating CD14+ monocytes and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions , 2002, Journal of Neuroimmunology.

[166]  S. L. Stevens,et al.  The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice , 2002, Brain Research.

[167]  D. Huszar,et al.  Mice deficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury , 2002, Journal of Neuroimmunology.

[168]  T. Espevik,et al.  The Proinflammatory CD14+CD16+DR++ Monocytes Are a Major Source of TNF1 , 2002, The Journal of Immunology.

[169]  V. Perry,et al.  Monocyte Chemoattractant Protein-1 Deficiency is Protective in a Murine Stroke Model , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[170]  R. Bartus,et al.  The Role of Leukocytes Following Cerebral Ischemia: Pathogenic Variable or Bystander Reaction to Emerging Infarct? , 2002, Experimental Neurology.

[171]  M. Rausch,et al.  Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage , 2001, Magnetic resonance in medicine.

[172]  J. Losy,et al.  Monocyte Chemoattractant Protein-1 Is Increased in the Cerebrospinal Fluid of Patients With Ischemic Stroke , 2001, Stroke.

[173]  J. Madara,et al.  The Role of CD47 in Neutrophil Transmigration , 2001, The Journal of Biological Chemistry.

[174]  Enlimomab Acute Stroke Trial Investigators Use of anti-ICAM-1 therapy in ischemic stroke , 2001, Neurology.

[175]  W. Ye,et al.  Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice , 2001, Brain Research.

[176]  Kortaro Tanaka,et al.  Enhanced Expression of Iba1, Ionized Calcium-Binding Adapter Molecule 1, After Transient Focal Cerebral Ischemia In Rat Brain , 2001, Stroke.

[177]  C. Iadecola,et al.  Cerebral ischemia and inflammation. , 2001 .

[178]  C. Iadecola,et al.  Cerebral ischemia and inflammation , 2001, Current opinion in neurology.

[179]  J. Madara,et al.  The Role of CD47 in Neutrophil Transmigration INCREASED RATE OF MIGRATION CORRELATES WITH INCREASED CELL SURFACE EXPRESSION OF CD47* , 2001 .

[180]  J. Madara,et al.  The role of CD 47 in neutrophil transmigration : Increased rate of migration correlates with increased cell surface expression of CD 47 , 2001 .

[181]  Kristi Kincaid,et al.  M-1/M-2 Macrophages and the Th1/Th2 Paradigm1 , 2000, The Journal of Immunology.

[182]  C. Weber,et al.  Differential chemokine receptor expression and function in human monocyte subpopulations , 2000, Journal of leukocyte biology.

[183]  Y. Ikeda,et al.  Neutrophil elastase inhibition reduces cerebral ischemic damage in the middle cerebral artery occlusion , 2000, Brain Research.

[184]  C. Carter,et al.  Fractalkine modulates TNF‐α secretion and neurotoxicity induced by microglial activation , 2000 .

[185]  G. Feuerstein,et al.  Inflammation and Stroke: Putative Role for Cytokines, Adhesion Molecules and iNOS in Brain Response to Ischemia , 2000, Brain pathology.

[186]  B. Pessac,et al.  Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. , 1999, Brain research. Developmental brain research.

[187]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[188]  D. Wagner,et al.  P- and E-selectin-deficient mice are susceptible to cerebral ischemia–reperfusion injury , 1999, Brain Research.

[189]  D. Granger,et al.  Leukocyte‐endothelial cell adhesion: avenues for therapeutic intervention , 1999, British journal of pharmacology.

[190]  F. Barone,et al.  Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. , 1998, Stroke.

[191]  Fangyi Zhang,et al.  Delayed Reduction of Ischemic Brain Injury and Neurological Deficits in Mice Lacking the Inducible Nitric Oxide Synthase Gene , 1997, The Journal of Neuroscience.

[192]  T. Schall,et al.  Identification and Molecular Characterization of Fractalkine Receptor CX3CR1, which Mediates Both Leukocyte Migration and Adhesion , 1997, Cell.

[193]  H. Ziegler-Heitbrock,et al.  Heterogeneity of human blood monocytes: the CD14+ CD16+ subpopulation. , 1996, Immunology today.

[194]  T. Sternsdorf,et al.  Differential cytokine expression in human blood monocyte subpopulations: a polymerase chain reaction analysis. , 1996, Blood.

[195]  A. Manning,et al.  Regional differences in constitutive and induced ICAM-1 expression in vivo. , 1995, The American journal of physiology.

[196]  D. Schober,et al.  Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[197]  W. Hickey,et al.  Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. , 1995, Journal of immunology.

[198]  Y. Shiga,et al.  Correlation Between Myeloperoxidase‐Quantified Neutrophil Accumulation and Ischemic Brain Injury in the Rat: Effects of Neutrophil Depletion , 1994, Stroke.

[199]  R. Chuaqui,et al.  Histologic Assessment of the Age of Recent Brain Infarcts in Man , 1993, Journal of neuropathology and experimental neurology.

[200]  F. Baldwin Microglia and Brain Macrophages , 1980 .

[201]  S. Perry,et al.  Evaluation of marrow granulocytic reserves in normal and disease states. , 1960, Blood.

[202]  H. Bierman,et al.  The release of leukocytes and platelets from the pulmonary circulation by epinephrine. , 1952, Blood.

[203]  N. Petrakis,et al.  The pulmonary circulation as a source of leucocytes and platelets in man. , 1951, Science.