Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron

A single neuron is responsible for adaptive normalization in an olfactory circuit generating sparse odor representations. Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative-feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable “giant” nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.

[1]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[2]  M. Burrows,et al.  Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust. , 1978, The Journal of physiology.

[3]  M. Burrows,et al.  The distribution of synapses on the two fields of neurites of spiking local interneurones in the locust , 1985, The Journal of comparative neurology.

[4]  Pentti Kanerva,et al.  Sparse Distributed Memory , 1988 .

[5]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[6]  G. Laurent,et al.  Odorant-induced oscillations in the mushroom bodies of the locust , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  G. Laurent,et al.  GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system , 1996, The Journal of comparative neurology.

[8]  N. Strausfeld,et al.  Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana , 1997, The Journal of comparative neurology.

[9]  J. Ashby References and Notes , 1999 .

[10]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[11]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[12]  Richard Hans Robert Hahnloser,et al.  An ultra-sparse code underliesthe generation of neural sequences in a songbird , 2002, Nature.

[13]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[14]  M. DeWeese,et al.  Binary Spiking in Auditory Cortex , 2003, The Journal of Neuroscience.

[15]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[16]  G. Laurent,et al.  Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection Neurons , 2005, Neuron.

[17]  V. Jayaraman,et al.  Encoding and Decoding of Overlapping Odor Sequences , 2006, Neuron.

[18]  G. Laurent,et al.  Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts , 2007, Nature.

[19]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[20]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[21]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[22]  Ronald L. Davis,et al.  The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning , 2008, Nature Neuroscience.