Human mobility and time spent at destination: impact on spatial epidemic spreading.

[1]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[2]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[3]  Norman T. J. Bailey,et al.  The Mathematical Theory of Infectious Diseases , 1975 .

[4]  H. Hethcote,et al.  An immunization model for a heterogeneous population. , 1978, Theoretical population biology.

[5]  Roy M. Anderson,et al.  Spatial heterogeneity and the design of immunization programs , 1984 .

[6]  L. A. Rvachev,et al.  A mathematical model for the global spread of influenza , 1985 .

[7]  I. Longini A mathematical model for predicting the geographic spread of new infectious agents , 1988 .

[8]  A. Flahault,et al.  A method for assessing the global spread of HIV-1 infection based on air travel. , 1992, Mathematical population studies.

[9]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[10]  K. Dietz,et al.  A structured epidemic model incorporating geographic mobility among regions. , 1995, Mathematical biosciences.

[11]  B Grenfell,et al.  Space, persistence and dynamics of measles epidemics. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  G. Hartvigsen Metapopulation biology: Ecology, genetics, and evolution , 1997 .

[13]  B. Grenfell,et al.  (Meta)population dynamics of infectious diseases. , 1997, Trends in ecology & evolution.

[14]  F. Ball,et al.  Epidemics with two levels of mixing , 1997 .

[15]  Matt J Keeling,et al.  Metapopulation moments: coupling, stochasticity and persistence. , 2000, The Journal of animal ecology.

[16]  Alessandro Vespignani,et al.  Epidemic dynamics and endemic states in complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[18]  M. Keeling,et al.  Estimating spatial coupling in epidemiological systems: a mechanistic approach , 2002 .

[19]  B. Mckercher,et al.  Distance Decay and the Impact of Effective Tourism Exclusion Zones on International Travel Flows , 2003 .

[20]  G. Glass,et al.  Assessing the impact of airline travel on the geographic spread of pandemic influenza , 2003 .

[21]  J. Hyman,et al.  Scaling laws for the movement of people between locations in a large city. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  N. Ferguson,et al.  Planning for smallpox outbreaks , 2003, Nature.

[23]  J. H. Ellis,et al.  Modeling the Spread of Annual Influenza Epidemics in the U.S.: The Potential Role of Air Travel , 2004, Health care management science.

[24]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[25]  Aravind Srinivasan,et al.  Structure of Social Contact Networks and Their Impact on Epidemics , 2004, Discrete Methods in Epidemiology.

[26]  T. Geisel,et al.  Forecast and control of epidemics in a globalized world. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Oscar E. Gaggiotti,et al.  Ecology, genetics, and evolution of metapopulations , 2004 .

[28]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Alessandro Vespignani,et al.  Dynamical Patterns of Epidemic Outbreaks in Complex Heterogeneous Networks , 1999 .

[31]  R. Pastor-Satorras,et al.  Generation of uncorrelated random scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  W. Getz,et al.  PERSPECTIVES Duelling timescales of host movement and disease recovery determine invasion of disease in structured populations , 2005 .

[33]  Alexei Vazquez,et al.  Polynomial growth in branching processes with diverging reproductive number. , 2006, Physical review letters.

[34]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[35]  W. Edmunds,et al.  Delaying the International Spread of Pandemic Influenza , 2006, PLoS medicine.

[36]  Alessandro Vespignani,et al.  The role of the airline transportation network in the prediction and predictability of global epidemics , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[38]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[39]  Alessandro Vespignani,et al.  Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions , 2007, PLoS medicine.

[40]  Joshua M. Epstein,et al.  Controlling Pandemic Flu: The Value of International Air Travel Restrictions , 2007, PloS one.

[41]  Alessandro Vespignani,et al.  Invasion threshold in heterogeneous metapopulation networks. , 2007, Physical review letters.

[42]  Ummuhan Gokovali,et al.  Determinants of length of stay: A practical use of survival analysis , 2007 .

[43]  Alessandro Vespignani,et al.  Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study , 2007, BMC medicine.

[44]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[45]  Alessandro Vespignani,et al.  Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. , 2007, Journal of theoretical biology.

[46]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[47]  Alessandro Vespignani,et al.  influenza A(H1N1): a Monte Carlo likelihood analysis based on , 2009 .

[48]  Marta C. González,et al.  Understanding spatial connectivity of individuals with non-uniform population density , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  L. Danon,et al.  The role of routine versus random movements on the spread of disease in Great Britain , 2009, Epidemics.

[50]  G. Lohmann,et al.  From hub to tourist destination – An explorative study of Singapore and Dubai's aviation-based transformation , 2009 .

[51]  C. Watkins,et al.  The spread of awareness and its impact on epidemic outbreaks , 2009, Proceedings of the National Academy of Sciences.

[52]  Piero Poletti,et al.  Spontaneous behavioural changes in response to epidemics. , 2009, Journal of theoretical biology.

[53]  L. Danon,et al.  Individual identity and movement networks for disease metapopulations , 2010, Proceedings of the National Academy of Sciences.

[54]  Alessandro Vespignani Multiscale mobility networks and the large scale spreading of infectious diseases , 2010 .

[55]  Dennis L. Chao,et al.  FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model , 2010, PLoS Comput. Biol..

[56]  Chaoming Song,et al.  Modelling the scaling properties of human mobility , 2010, 1010.0436.

[57]  V. Jansen,et al.  Modelling the influence of human behaviour on the spread of infectious diseases: a review , 2010, Journal of The Royal Society Interface.

[58]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[59]  A. Barrat,et al.  Dynamical Patterns of Cattle Trade Movements , 2011, PloS one.

[60]  Alessandro Vespignani,et al.  Phase transitions in contagion processes mediated by recurrent mobility patterns , 2011, Nature physics.

[61]  T. Geisel,et al.  Natural human mobility patterns and spatial spread of infectious diseases , 2011, 1103.6224.

[62]  Alessandro Vespignani,et al.  Modeling human mobility responses to the large-scale spreading of infectious diseases , 2011, Scientific reports.

[63]  Alessandro Vespignani,et al.  Towards a Characterization of Behavior-Disease Models , 2011, PloS one.

[64]  Alessandro Vespignani,et al.  Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic , 2011, PloS one.

[65]  Alain Barrat,et al.  Optimizing surveillance for livestock disease spreading through animal movements , 2012, Journal of The Royal Society Interface.

[66]  C. Scoglio,et al.  On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading , 2012, Scientific Reports.

[67]  Vittoria Colizza,et al.  Heterogeneous length of stay of hosts’ movements and spatial epidemic spread , 2012, Scientific Reports.

[68]  Alessandro Vespignani,et al.  Invasion threshold in structured populations with recurrent mobility patterns. , 2012, Journal of theoretical biology.

[69]  V. Colizza,et al.  Age-specific contacts and travel patterns in the spatial spread of 2009 H1N1 influenza pandemic , 2013, BMC Infectious Diseases.