A mathematical model of maximal expiratory flow was developed. Coupled equations describing the pressure losses in the flow and the pressure-area behavior of the airway were integrated along the airway from the periphery to the flow-limiting site. Equations describing pressure losses in the flow were adapted from studied of bronchial casts. The bronchial anatomy utilized was that described by Weibel. Bronchial mechanical properties were obtained from measurements in excised human lungs for the central airways and by extrapolations of these data for the peripheral airways. The maximal flow for air and helium predicted by the model agrees with that of five lungs from which mechanical properties were obtained. The model predictions agree with published values of density and viscosity dependence of maximal flow. At high and midlung volumes, maximal flow is determined primarily by the wave-speed mechanism. At low lung volumes, maximal flow is primarily determined by the coupling of viscous pressure losses and airway mechanical properties.