Triangulations of cyclic polytopes

We give a new description of the combinatorics of triangulations of even-dimensional cyclic polytopes, and of their bistellar flips. We show that the tropical exchange relation governing the number of intersections between diagonals of a polygon and a lamination (which generalizes to arbitrary surfaces) can also be generalized in a different way, to the setting of higher dimensional cyclic polytopes.

[1]  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[2]  Jörg Rambau,et al.  The Generalized Baues Problem for Cyclic Polytopes I , 2000, Eur. J. Comb..

[3]  Carl W. Lee,et al.  The Associahedron and Triangulations of the n-gon , 1989, Eur. J. Comb..

[4]  Sergey Fomin,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006 .

[5]  Jörg Rambau,et al.  On Subdivision Posets of Cyclic Polytopes , 2000, Eur. J. Comb..

[6]  Victor Reiner,et al.  The higher Stasheff-Tamari posets , 1996 .

[7]  Alek Vainshtein,et al.  Cluster algebras and Weil-Petersson forms , 2003 .

[8]  H. Thomas,et al.  Higher-dimensional cluster combinatorics and representation theory , 2010, 1001.5437.

[9]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[10]  Günter M. Ziegler,et al.  Combinatorics of Polytopes - Preface , 2000, Eur. J. Comb..

[11]  Vladimir Voevodsky,et al.  Combinatorial-geometric aspects of polycategory theory : pasting schemes and higher Bruhat orders (list of results) , 1991 .

[12]  P. McMullen A COURSE IN CONVEXITY (Graduate Studies in Mathematics 54) By ALEXANDER BARVINOK: 366 pp., US$59.00, ISBN 0-8218-2968-8 (American Mathematical Society, Providence, RI, 2002) , 2003 .

[13]  Anders Björner,et al.  Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings , 1984 .

[14]  Tilting theory and cluster combinatorics , 2004, math/0402054.

[15]  Hugh Thomas New Combinatorial Descriptions of the Triangulations of Cyclic Polytopes and the Second Higher Stasheff–Tamari Posets , 2002, Order.

[16]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[17]  Margaret M. Bayer Equidecomposable and weakly neighborly polytopes , 1993 .

[18]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[19]  Tamal K. Dey On Counting Triangulations in D Dimensions , 1993, Comput. Geom..

[20]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[21]  BSTRACT,et al.  TRIANGULATIONS OF CYCLIC POLYTOPES AND HIGHER BRUHAT , 1997 .

[22]  Jörg Rambau,et al.  Triangulations of cyclic polytopes and higher Bruhat orders , 1997 .

[23]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[24]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .