Design and Tailoring of a Three-Dimensional TiO2–Graphene–Carbon Nanotube Nanocomposite for Fast Lithium Storage

Nanocrystalline TiO2 grown on conducting graphene nanosheets (GNS) and multiwalled carbon nanotubes (CNTs) via a solution-based method to form a three-dimensional (3D) hierarchical structure for fast lithium storage. CNTs in the unique hybrid nanostructure not only prevent the restacking of GNS to increase the basal spacing between graphene sheets but also provides an additional electron-transport path besides the graphene layer underneath of TiO2 nanomaterials, increasing the electrolyte/electrode contact area and facilitating transportation of the electrolyte ion and electron into the inner region of the electrode. Such a 3D TiO2–GNS–CNT nanocomposite had a large specific surface area of 291.2 m2 g–1 and exhibited ultrahigh rate capability and good cycling properties at high rates.

[1]  Hongsen Li,et al.  Novel template-free solvothermal synthesis of mesoporous Li4Ti5O12-C microspheres for high power lithium ion batteries , 2011 .

[2]  Bei Wang,et al.  In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance , 2011 .

[3]  Xingcheng Xiao,et al.  Free-Standing Layer-By-Layer Hybrid Thin Film of Graphene-MnO2 Nanotube as Anode for Lithium Ion Batteries , 2011 .

[4]  M. Wohlfahrt‐Mehrens,et al.  TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance. , 2011, Small.

[5]  X. Lou,et al.  SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. , 2011, Chemical communications.

[6]  Feng Li,et al.  Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template‐Free Self‐Assembly , 2011 .

[7]  X. Lou,et al.  Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. , 2011, Nanoscale.

[8]  X. Lou,et al.  Graphene-supported anatase TiO2 nanosheets for fast lithium storage. , 2011, Chemical communications.

[9]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[10]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[11]  Haijiao Zhang,et al.  A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange , 2011 .

[12]  Xiaogang Zhang,et al.  In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries. , 2011, Nanoscale.

[13]  A. Manthiram Correction to “Materials Challenges and Opportunities of Lithium Ion Batteries” , 2011 .

[14]  D. Wexler,et al.  Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. , 2011, Chemistry.

[15]  Xiaogang Zhang,et al.  In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries , 2011 .

[16]  Yong Wang,et al.  Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries , 2010 .

[17]  Jinghong Li,et al.  Preparation of SnO2-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability , 2010 .

[18]  P. Ordejón,et al.  Electronic transport between graphene layers covalently connected by carbon nanotubes. , 2010, ACS nano.

[19]  Guangmin Zhou,et al.  Graphene-Wrapped Fe(3)O(4) Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries , 2010 .

[20]  Christopher S. Johnson,et al.  Autogenic reactions for preparing carbon-encapsulated, nanoparticulate TiO2 electrodes for lithium-ion batteries , 2010 .

[21]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[22]  Q. Li,et al.  Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries , 2010 .

[23]  Xiaogang Zhang,et al.  Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries , 2010 .

[24]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[25]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[26]  S. Das,et al.  High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon , 2010 .

[27]  Shi Xue Dou,et al.  Enhanced reversible lithium storage in a nanosize silicon/graphene composite , 2010 .

[28]  Li-Jun Wan,et al.  Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .

[29]  Dingshan Yu,et al.  Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors , 2010 .

[30]  Bei Wang,et al.  Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries , 2009 .

[31]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[32]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[33]  Z. Yang,et al.  Self-Assembled TiO 2 -Graphene Hybrid Nanostructures for Enhanced Li-Ion , 2009 .

[34]  Min Gyu Kim,et al.  Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material , 2008 .

[35]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[36]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[37]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[38]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.