Multilevel Iterative Methods and Deflation

In this paper, we show that the deflation method can be viewed as a possible implementation of the CG method with multilevel preconditioner. Further, we demonstrate efficiency and robustness of different implementations of multilevel preconditioners with different "coarse grid" spaces by solving a simple model problem.

[1]  Cornelis Vuik,et al.  A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..

[2]  J. Mandel,et al.  Hybrid Domain Decomposition with Unstructured Subdomains , 2022 .

[3]  Radim Blaheta,et al.  GPCG–generalized preconditioned CG method and its use with non‐linear and non‐symmetric displacement decomposition preconditioners , 2002, Numer. Linear Algebra Appl..

[4]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[5]  R. Blaheta,et al.  Space decomposition preconditioners and their application in geomechanics , 2003, Math. Comput. Simul..

[6]  Radim Blaheta Space Decomposition Preconditioners and Parallel Solvers , 2004 .

[7]  Cornelis Vuik,et al.  A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..

[8]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[9]  Cornelis Vuik,et al.  On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..

[10]  Owe Axelsson OPTIMAL PRECONDITIONERS BASED ON RATE OF CONVERGENCE ESTIMATES FOR THE CONJUGATE GRADIENT METHOD , 2001 .

[11]  Radim Blaheta,et al.  A multilevel method with overcorrection by aggregation for solving discrete elliptic problems , 1988 .

[12]  Radim Blaheta,et al.  Algebraic Multilevel Methods with Aggregations: An Overview , 2005, LSSC.

[13]  Z. Dostál Conjugate gradient method with preconditioning by projector , 1988 .