The peptide hormone pQDLDHVFLRFamide (crustacean myosuppressin) modulates the Homarus americanus cardiac neuromuscular system at multiple sites

SUMMARY pQDLDHVFLRFamide is a highly conserved crustacean neuropeptide with a structure that places it within the myosuppressin subfamily of the FMRFamide-like peptides. Despite its apparent ubiquitous conservation in decapod crustaceans, the paracrine and/or endocrine roles played by pQDLDHVFLRFamide remain largely unknown. We have examined the actions of this peptide on the cardiac neuromuscular system of the American lobster Homarus americanus using four preparations: the intact animal, the heart in vitro, the isolated cardiac ganglion (CG), and a stimulated heart muscle preparation. In the intact animal, injection of myosuppressin caused a decrease in heartbeat frequency. Perfusion of the in vitro heart with pQDLDHVFLRFamide elicited a decrease in the frequency and an increase in the amplitude of heart contractions. In the isolated CG, myosuppressin induced a hyperpolarization of the resting membrane potential of cardiac motor neurons and a decrease in the cycle frequency of their bursting. In the stimulated heart muscle preparation, pQDLDHVFLRFamide increased the amplitude of the induced contractions, suggesting that myosuppressin modulates not only the CG, but also peripheral sites. For at least the in vitro heart and the isolated CG, the effects of myosuppressin were dose-dependent (10−9 to 10−6 mol l−1 tested), with threshold concentrations (10−8−10−7 mol l−1) consistent with the peptide serving as a circulating hormone. Although cycle frequency, a parameter directly determined by the CG, consistently decreased when pQDLDHVFLRFamide was applied to all preparation types, the magnitudes of this decrease differed, suggesting the possibility that, because myosuppressin modulates the CG and the periphery, it also alters peripheral feedback to the CG.

[1]  W. Rathmayer,et al.  Localization of a FMRFamide‐related peptide in efferent neurons and analysis of neuromuscular effects of DRNFLRFamide (DF2) in the crustacean Idotea emarginata. , 2003, The European journal of neuroscience.

[2]  Yun-Wei A Hsu,et al.  Midgut epithelial endocrine cells are a rich source of the neuropeptides APSGFLGMRamide (Cancer borealis tachykinin-related peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the crabs Cancer borealis, Cancer magister and Cancer productus , 2007, Journal of Experimental Biology.

[3]  J. Kerrison,et al.  The effects of gamma-aminobutyric acid on voltage-clamped motoneurons of the lobster cardiac ganglion. , 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[4]  I Hurwitz,et al.  Serotonergic and peptidergic modulation of the buccal mass protractor muscle (I2) in aplysia. , 2000, Journal of neurophysiology.

[5]  S. Greenwood,et al.  Identification and cardiotropic actions of brain/gut-derived tachykinin-related peptides (TRPs) from the American lobster Homarus americanus , 2008, Peptides.

[6]  K. Krajniak The identification and structure-activity relations of a cardioactive FMRFamide-related peptide from the blue crab Callinectes sapidus , 1991, Peptides.

[7]  E. Kravitz,et al.  Purification and characterization of FMRFamidelike immunoreactive substances from the lobster nervous system: Isolation and sequence analysis of two closely related peptides , 1987, The Journal of comparative neurology.

[8]  E Marder,et al.  Modulation of the lobster pyloric rhythm by the peptide proctolin , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Manfred Schmidt Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans , 1997, Brain Research.

[10]  Molly A. Kwiatkowski,et al.  Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system , 2010, Journal of Experimental Biology.

[11]  M. Miller,et al.  Some effects of proctolin on the cardiac ganglion of the Maine Lobster, Homarus americanus (Milne Edwards). , 1981, Journal of neurobiology.

[12]  J. Wilkens,et al.  The control of vascular resistance in the southern rock lobster, Jasus edwardsii (Decapoda: Palinuridae). , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[13]  I. McGaw,et al.  Crustacean cardioexcitatory peptides may inhibit the heart in vivo. , 1995, The Journal of experimental biology.

[14]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[15]  A. Christie,et al.  High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders , 2007, Peptides.

[16]  D. J. Burinsky,et al.  Mass spectral characterization , 2004 .

[17]  A. Watanabe,et al.  The Spread of Excitation among Neurons in the Heart Ganglion of the Stomatopod, Squilla oratoria , 1963, The Journal of general physiology.

[18]  I. Kupfermann,et al.  Modulation of radula opener muscles in Aplysia. , 1999, Journal of neurophysiology.

[19]  E Marder,et al.  Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. , 1998, Journal of neurophysiology.

[20]  B. Ache,et al.  Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster , 1997, Cell and Tissue Research.

[21]  K. R. Weiss,et al.  Peptidergic co-transmission inAplysia: Functional implications for rhythmic behaviors , 1992, Experientia.

[22]  I. Orchard,et al.  Isolation of two FMRFamide-related peptides from crayfish pericardial organs , 1993, Peptides.

[23]  I. McGaw,et al.  Peptidergic modulation of cardiovascular dynamics in the Dungeness crab, Cancer magister , 1994, Journal of Comparative Physiology B.

[24]  E. Kravitz,et al.  Targets of octopamine action in the lobster: cyclic nucleotide changes and physiological effects in hemolymph, heart and exoskeletal muscle. , 1978, The Journal of pharmacology and experimental therapeutics.

[25]  I. McGaw,et al.  The FMRFamide-related peptides F1 and F2 alter hemolymph distribution and cardiac output in the crab Cancer magister. , 1995, The Biological bulletin.

[26]  Timothy J. Fort,et al.  Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. , 2004, Journal of neurophysiology.

[27]  Lingjun Li,et al.  Identification and cardiotropic actions of sulfakinin peptides in the American lobster Homarus americanus , 2007, Journal of Experimental Biology.

[28]  E. Kravitz,et al.  FMRFamidelike peptides of homarus americanus: Distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities , 1987, The Journal of comparative neurology.

[29]  A. Mercier,et al.  Modulation of Crayfish Hearts by FMRFamide-related Peptides. , 1992, The Biological bulletin.

[30]  M. Miller,et al.  Dual effects of proctolin on the rhythmic burst activity of the cardiac ganglion. , 1984, Journal of Neurobiology.

[31]  E. Marder,et al.  Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. , 1995, The Journal of experimental biology.

[32]  Timothy J. Fort,et al.  Regulation of the crab heartbeat by FMRFamide-like peptides: multiple interacting effects on center and periphery. , 2007, Journal of neurophysiology.

[33]  J. Wilkens,et al.  Comparison of the effects of five hormones on intact and open heart cardiac ganglionic output and myocardial contractility in the shore crab Carcinus maenas , 1998 .

[34]  A. Sakurai,et al.  Tension sensitivity of the heart pacemaker neurons in the isopod crustacean Ligia pallasii , 2003, Journal of Experimental Biology.

[35]  I. Cooke,et al.  Reliable, Responsive Pacemaking and Pattern Generation With Minimal Cell Numbers: the Crustacean Cardiac Ganglion , 2002, The Biological Bulletin.

[36]  E. Kravitz,et al.  Peptide F1, an N-terminally extended analog of FMRFamide, enhances contractile activity in multiple target tissues in lobster. , 1995, The Journal of experimental biology.

[37]  J. Freschi Proctolin activates a slow, voltage-dependent sodium current in motoneurons of the lobster cardiac ganglion , 1989, Neuroscience Letters.

[38]  Theodore H. Bullock,et al.  Modulation of Activity of One Neuron by Subthreshold Slow Potentials in Another in Lobster Cardiac Ganglion , 1960, The Journal of general physiology.

[39]  D. Towle,et al.  Gene discovery in Carcinus maenas and Homarus americanus via expressed sequence tags. , 2006, Integrative and comparative biology.

[40]  E. Mayeri,et al.  Functional Organization of the Cardiac Ganglion of the Lobster, Homarus americanus , 1973, The Journal of general physiology.

[41]  Mcmahon,et al.  Cardiovascular functions in two macruran decapod crustaceans (Procambarus clarkii and Homarus americanus) during periods of inactivity, tail flexion and cardiorespiratory pauses , 1997, The Journal of experimental biology.

[42]  D. Livengood,et al.  Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion. , 1989, Journal of neurophysiology.

[43]  Eve Marder,et al.  Modification of Oscillator Function by Electrical Coupling to Nonoscillatory Neurons , 1992 .

[44]  A. Christie,et al.  Identification of SYWKQCAFNAVSCFamide: a broadly conserved crustacean C-type allatostatin-like peptide with both neuromodulatory and cardioactive properties , 2009, Journal of Experimental Biology.

[45]  E Marder,et al.  Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus , 1999, The Journal of comparative neurology.

[46]  J. Wilkens,et al.  Intrinsic properties and extrinsic neurohormonal control of crab cardiac hemodynamics , 1992, Experientia.

[47]  E. Marder,et al.  The effect of electrical coupling on the frequency of model neuronal oscillators. , 1990, Science.

[48]  E. Marder,et al.  Multiple modulators act on the cardiac ganglion of the crab, Cancer borealis , 2007, Journal of Experimental Biology.

[49]  N. Syed,et al.  In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas. , 1999, Journal of neurophysiology.

[50]  Cooke Im The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. , 1966 .

[51]  M. F. Goy,et al.  Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. , 2008, General and comparative endocrinology.

[52]  E. Florey,et al.  The effects of octopamine and other amines on the heart and on neuromuscular transmission in decapod crustaceans: further evidence for a role as neurohormone. , 1978, Comparative biochemistry and physiology. C: Comparative pharmacology.

[53]  D. Hartline,et al.  Neurohormonal alteration of integrative properties of the cardiac ganglion of the lobster Homarus americanus. , 1975, The Journal of experimental biology.

[54]  Timothy J. Fort,et al.  Regulation of the crab heartbeat by crustacean cardioactive peptide (CCAP): central and peripheral actions. , 2007, Journal of neurophysiology.

[55]  I. Cooke,et al.  Neural activation of the heart of the lobster Homarus americanus. , 1971, The Journal of experimental biology.

[56]  E. Marder,et al.  Mass spectrometric characterization and physiological actions of GAHKNYLRFamide, a novel FMRFamide‐like peptide from crabs of the genus Cancer , 2006, Journal of neurochemistry.

[57]  E. Marder,et al.  TNRNFLRFamide and SDRNFLRFamide modulate muscles of the stomatogastric system of the crab Cancer borealis , 1996, Journal of Comparative Physiology A.

[58]  E. Marder,et al.  Nitric Oxide Inhibits the Rate and Strength of Cardiac Contractions in the Lobster Homarus americanus by Acting on the Cardiac Ganglion , 2004, The Journal of Neuroscience.

[59]  H. T. ter Keurs,et al.  Sites and modes of action of proctolin and the FLP F2 on lobster cardiac muscle , 2005, Journal of Experimental Biology.

[60]  The effects of glutamate agonists on voltage-clamped motoneurons of the lobster cardiac ganglion. , 1992, The Journal of experimental biology.

[61]  S. Tobe,et al.  Characterization of the gene for leucomyosuppressin and its expression in the brain of the cockroach Diploptera punctata. , 1996, Insect biochemistry and molecular biology.

[62]  J. Wilkens,et al.  Proctolin affects the activity of the cardiac ganglion, myocardium, and cardioarterial valves in Carcinus maenas hearts , 1998, Journal of Comparative Physiology B.

[63]  J. Alexandrowicz Memoirs: The Innervation of the heart of the Crustacea. I. Decapoda , 1932 .

[64]  J. Veenstra,et al.  Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. , 2000, Archives of insect biochemistry and physiology.

[65]  M. Miller,et al.  Cholinergic activation of the lobster cardiac ganglion. , 1990, Journal of neurobiology.

[66]  A. Ebara,et al.  Neurohormonal Modulation of the Cardiac Outflow Through the Cardioarterial Valve in the Lobster , 1984 .

[67]  K. R. Weiss,et al.  Peptide Cotransmitter Release from Motorneuron B16 inAplysia californica: Costorage, Corelease, and Functional Implications , 2000, The Journal of Neuroscience.

[68]  S. Hagiwara,et al.  Potential changes in syncytial neurons of lobster cardiac ganglion. , 1959, Journal of neurophysiology.

[69]  J. Connor,et al.  Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. , 1969, The Journal of experimental biology.

[70]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[71]  Responsiveness of neurogenic hearts to octopamine. , 1975, Comparative biochemistry and physiology. C: Comparative pharmacology.

[72]  D. Hartline,et al.  Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. , 1967, The Journal of experimental biology.

[73]  I. Cooke The sites of action of pericardial organ extract and 5-hydroxytryptamine in the decapod crustacean heart. , 1966, American zoologist.

[74]  Donald M. Maynard,et al.  CHAPTER 5 – CIRCULATION AND HEART FUNCTION , 1960 .

[75]  Jary Y. Delgado,et al.  Localization of GABA- and glutamate-like immunoreactivity in the cardiac ganglion of the lobster Panulirus argus , 2000, Journal of neurocytology.

[76]  K Tazaki,et al.  Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. , 1990, Journal of neurophysiology.

[77]  I. Cooke,et al.  6 – Hormones and Neurosecretion , 1982 .

[78]  J. Castresana,et al.  The cDNA for leucomyosuppressin in Blattella germanica and molecular evolution of insect myosuppressins , 2004, Peptides.

[79]  A. Watanabe,et al.  The interaction of electrical activity among neurons of lobster cardiac ganglion. , 1958, The Japanese journal of physiology.

[80]  J. Alexandrowicz,et al.  The Innervation of the heart of the Crustacea , 2006 .

[81]  A. Berlind,et al.  Cyclic Adenosine Monophosphate Mediation of Peptide Neurohormone Effects on the Lobster Cardiac Ganglion , 1981 .

[82]  Amos Bairoch,et al.  The Sulfinator: predicting tyrosine sulfation sites in protein sequences , 2002, Bioinform..

[83]  Stefan R. Pulver,et al.  Neuromodulatory complement of the pericardial organs in the embryonic lobster, homarus americanus , 2002, The Journal of comparative neurology.