A Fast, Robust Algorithm for Total Variation Based Reconstruction of Noisy, Blurred Images

| Tikhonov regularization with a modiied total variation regularization functional is used to recover an image from noisy, blurred data. This approach is appropriate for image processing in that it does not place a priori smoothness conditions on the solution image. An eecient algorithm is presented for the discretized problem which combines a xed point iteration to handle nonlinearity with an eeective preconditioned conjugate gradient iteration for large linear systems. Reconstructions and convergence results are presented for an application to satellite image reconstruction.

[1]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[2]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[3]  James G. Nagy,et al.  Iterative image restoration using approximate inverse preconditioning , 1996, IEEE Trans. Image Process..

[4]  C. W. Groetsch,et al.  Inverse Problems in the Mathematical Sciences , 1993 .

[5]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[6]  M. Oman Fast Multigrid Techniques in Total Variation-Based Image Reconstruction , 1996 .

[7]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  Gene H. Golub,et al.  A Nonlinear primal dual method for TV-based image restoration , 1996 .

[10]  Richard E. Ewing,et al.  A multigrid algorithm for the cell-centered finite difference scheme , 1993 .

[11]  C. Vogel A Multigrid Method for Total Variation-Based Image Denoising , 1995 .

[12]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[13]  V. A. Barker,et al.  Finite element solution of boundary value problems , 1984 .

[14]  J. Nagy,et al.  Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques , 1996 .

[15]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[16]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[17]  M. Ng,et al.  Generalization of Strang's Preconditioner with Applications to Toeplitz Least Squares Problems , 1996, Numer. Linear Algebra Appl..

[18]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[19]  Curtis R. Vogel,et al.  Fast numerical methods for total variation minimization in image reconstruction , 1995, Optics & Photonics.

[20]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[21]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[22]  Raymond H. Chan,et al.  Continuation method for total variation denoising problems , 1995, Optics & Photonics.

[23]  A. Weiser,et al.  On convergence of block-centered finite differences for elliptic-problems , 1988 .

[24]  J Bille,et al.  Reconstructing 3-D light-microscopic images by digital image processing. , 1985, Applied optics.

[25]  A. Tal,et al.  Numerical solution of Fredholm integral equation of the first kind , 1967 .