Gas sensing characteristics of multi-wall carbon nanotubes

Abstract Impedance spectroscopy was used to study the gas sensing behavior of both capacitance and resistance based sensors employing multi-wall carbon nanotubes (MWNTs) as the active sensing element. Studies revealed the chemisorption of reducing gases upon the surface of the MWNTs. Increasing sensor impedance was observed with increasing humidity or partial pressures of ammonia, carbon monoxide, and carbon dioxide. The impedance changes are attributed to p-type conductivity in semiconducting MWNTs, and the formation of Schottky barriers between the metallic and semiconducting nanotubes. Reversible behavior is demonstrated for the MWNT sensors in response to humidity, carbon monoxide and carbon dioxide. The MWNT sensors strongly respond to ammonia behaving as dosimeters.

[1]  Craig A. Grimes,et al.  The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites , 2000 .

[2]  A. K. Jonscher,et al.  Analysis of the alternating current properties of ionic conductors , 1978 .

[3]  M. S. Dresselhaus,et al.  Down the straight and narrow , 1992, Nature.

[4]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[5]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[6]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[7]  W. Steele,et al.  Computer simulation of ammonia on graphite. I. Low temperature structure of monolayer and bilayer films , 1990 .

[8]  P. B. Weisz,et al.  Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis , 1953 .

[9]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[10]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[11]  Hiromichi Kataura,et al.  Gas adsorption in the inside and outside of single-walled carbon nanotubes , 2001 .

[12]  Yayi Wei,et al.  Directed assembly of carbon nanotube electronic circuits by selective area chemical vapor deposition on prepatterned catalyst electrode structures , 2000 .

[13]  Eklund,et al.  Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes , 2000, Physical review letters.

[14]  Yoshinori Ando,et al.  Electrical conductivities of multi-wall carbon nano tubes , 1999 .

[15]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[16]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[17]  A. B. Kaiser,et al.  Heterogeneous model for conduction in conducting polymers and carbon nanotubes , 2001 .

[18]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[19]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[20]  R. Superfine,et al.  Tunable resistance of a carbon nanotube-graphite interface. , 2000, Science.

[21]  O. Varghese,et al.  Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy , 2000 .

[22]  Patrick Bernier,et al.  Carbon nanotubes and gas adsorption , 1999 .

[23]  C. Klein STB Model and Transport Properties of Pyrolytic Graphites , 1964, IBM J. Res. Dev..

[24]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[25]  M. Dresselhaus Carbon nanotubes , 1995 .

[26]  Jean-Christophe Charlier,et al.  Electronic structure and quantum transport in carbon nanotubes , 1998 .

[27]  T. Seiyama Chemical Sensors —Current State and Future Outlook , 1988 .

[28]  Stephen W. Howell,et al.  Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes , 1999 .

[29]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[30]  Sungho Jin,et al.  In situ-grown carbon nanotube array with excellent field emission characteristics , 2000 .

[31]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[32]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[33]  Vincent Bayot,et al.  Electrical resistance of a carbon nanotube bundle , 1994 .

[34]  Charles M. Lieber,et al.  Resonant electron scattering by defects in single-walled carbon nanotubes. , 2001, Science.

[35]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[36]  Werner J. Blau,et al.  Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite , 1998 .

[37]  Emmanuel Flahaut,et al.  CARBON NANOTUBE-METAL-OXIDE NANOCOMPOSITES: MICROSTRUCTURE, ELECTRICAL CONDUCTIVITY AND MECHANICAL PROPERTIES , 2000 .

[38]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[39]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[40]  P. Poncharal,et al.  Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat , 2000 .

[41]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[42]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[43]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[44]  C. Marliere,et al.  EFFECT OF GAS ADSORPTION ON THE ELECTRICAL PROPERTIES OF SINGLE WALLED CARBON NANOTUBES MATS , 1999 .

[45]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[46]  William J. Fleming,et al.  A Physical Understanding of Solid State Humidity Sensors , 1981 .

[47]  G. L. Sharma,et al.  Effect of Li+ doping on ZrO2–TiO2 humidity sensor , 1999 .

[48]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[49]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.