Mobile geometric graphs: detection, coverage and percolation

[1]  Zhenming Liu,et al.  Information Dissemination via Random Walks in d-Dimensional Space , 2011, SODA.

[2]  Rongfeng Sun,et al.  Survival Probability of a Random Walk Among a Poisson System of Moving Traps , 2010, 1010.3958.

[3]  Eli Upfal,et al.  Infectious Random Walks , 2010, ArXiv.

[4]  Takis Konstantopoulos Response to Prof. Baccelli's lecture on Modelling of Wireless Communication Networks by Stochastic Geometry , 2010, Comput. J..

[5]  Alistair Sinclair,et al.  Mobile Geometric Graphs, and Detection and Communication Problems in Mobile Wireless Networks , 2010, ArXiv.

[6]  Thomas Sauerwald,et al.  Efficient broadcast on random geometric graphs , 2010, SODA '10.

[7]  Xavier Pérez-Giménez,et al.  Large Connectivity for Dynamic Random Geometric Graphs , 2009, IEEE Transactions on Mobile Computing.

[8]  Prasun Sinha,et al.  Trap Coverage: Allowing Coverage Holes of Bounded Diameter in Wireless Sensor Networks , 2009, IEEE INFOCOM 2009.

[9]  Andrea E. F. Clementi,et al.  MANETS: High Mobility Can Make Up for Low Transmission Power , 2009, ICALP.

[10]  I. Balberg Continuum Percolation , 2009, Encyclopedia of Complexity and Systems Science.

[11]  N. Alon,et al.  The Probabilistic Method: Alon/Probabilistic , 2008 .

[12]  Chen Avin,et al.  On the cover time and mixing time of random geometric graphs , 2007, Theor. Comput. Sci..

[13]  Massimo Franceschetti,et al.  Closing the Gap in the Capacity of Wireless Networks Via Percolation Theory , 2007, IEEE Transactions on Information Theory.

[14]  Alan M. Frieze,et al.  Line-of-sight networks , 2007, SODA '07.

[15]  Patrick Thiran,et al.  Delay of intrusion detection in wireless sensor networks , 2006, MobiHoc '06.

[16]  Suhas N. Diggavi,et al.  Even One-Dimensional Mobility Increases the Capacity of Wireless Networks , 2005, IEEE Transactions on Information Theory.

[17]  Chen Avin,et al.  On the Cover Time of Random Geometric Graphs , 2005, ICALP.

[18]  Donald F. Towsley,et al.  Mobility improves coverage of sensor networks , 2005, MobiHoc '05.

[19]  G. Parisi Brownian motion , 2005, Nature.

[20]  Massimo Franceschetti,et al.  Closing the gap in the capacity of random wireless networks , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  O Bénichou,et al.  Lattice theory of trapping reactions with mobile species. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Devavrat Shah,et al.  Throughput-delay trade-off in wireless networks , 2004, IEEE INFOCOM 2004.

[23]  Bhaskar Krishnamachari,et al.  Sharp thresholds For monotone properties in random geometric graphs , 2003, STOC '04.

[24]  Harry Kesten,et al.  The spread of a rumor or infection in a moving population , 2003, math/0312496.

[25]  Panganamala Ramana Kumar A correction to the proof of a lemma in "The capacity of wireless networks" , 2003, IEEE Transactions on Information Theory.

[26]  Shashi Phoha,et al.  Surveillance coverage of sensor networks under a random mobility strategy , 2003, Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498).

[27]  Kevin R. Fall,et al.  A delay-tolerant network architecture for challenged internets , 2003, SIGCOMM '03.

[28]  David Tse,et al.  Mobility increases the capacity of ad hoc wireless networks , 2002, TNET.

[29]  Suhas Diggavi,et al.  Even one-dimensional mobility increases ad hoc wireless capacity , 2002, Proceedings IEEE International Symposium on Information Theory,.

[30]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  P. R. Kumar,et al.  Internets in the sky: The capacity of three-dimensional wireless networks , 2001, Commun. Inf. Syst..

[32]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[33]  M. Penrose On k-connectivity for a geometric random graph , 1999, Random Struct. Algorithms.

[34]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .

[35]  M. Penrose The longest edge of the random minimal spanning tree , 1997 .

[36]  D. J. White,et al.  Dynamic Boolean models , 1997 .

[37]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[38]  M. Penrose,et al.  Large deviations for discrete and continuous percolation , 1996, Advances in Applied Probability.

[39]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[40]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[41]  A. M. Berezhkovskii,et al.  Wiener sausage volume moments , 1989 .

[42]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[43]  F. Spitzer Electrostatic capacity, heat flow, and brownian motion , 1964 .

[44]  Z. Ciesielski,et al.  First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path , 1962 .