High-power low-droop violet semipolar (303¯1¯) InGaN/GaN light-emitting diodes with thick active layer design

Devices grown on nonpolar and semipolar planes of GaN offer key performance advantages over devices grown on the conventional c-plane, including reduced polarization fields. This allows for a wider design space on semipolar planes for light emitting diodes (LEDs) to address the problem of efficiency droop at high current densities. LED structures with very thick (10–100 nm) InGaN single-quantum-well/double heterostructure active regions were grown using conventional metal organic chemical vapor deposition on semipolar (303¯1¯) free-standing GaN substrates and processed and packaged using conventional techniques. Simulated band diagrams showed reduced polarization fields on the (303¯1¯) plane. The calculated critical thickness for misfit dislocation formation is higher on the (303¯1¯) plane than on other semipolar planes, such as (202¯1¯), allowing for thicker active regions than our previous work to further reduce droop. The higher critical thickness was confirmed with defect characterization via cathodol...

[1]  S. Denbaars,et al.  Onset of plastic relaxation in semipolar (112¯2) InxGa1−xN/GaN heterostructures , 2014 .

[2]  Shuji Nakamura,et al.  History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination , 2013, Proceedings of the IEEE.

[3]  S. Denbaars,et al.  Green Semipolar (202̄1̄) InGaN Light-Emitting Diodes with Small Wavelength Shift and Narrow Spectral Linewidth , 2013 .

[4]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[5]  S. Denbaars,et al.  Reduction in Thermal Droop Using Thick Single-Quantum-Well Structure in Semipolar (2021) Blue Light-Emitting Diodes , 2012 .

[6]  Shinichi Tanaka,et al.  High-Power, Low-Efficiency-Droop Semipolar (2021) Single-Quantum-Well Blue Light-Emitting Diodes , 2012 .

[7]  S. Denbaars,et al.  Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells , 2012 .

[8]  S. Denbaars,et al.  Trace analysis of non-basal plane misfit stress relaxation in (202¯1) and (303¯1¯) semipolar InGaN/GaN heterostructures , 2012 .

[9]  S. Denbaars,et al.  Stress relaxation and critical thickness for misfit dislocation formation in (101¯0) and (3031¯) InGaN/GaN heteroepitaxy , 2012 .

[10]  E. Fred Schubert,et al.  Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities , 2012 .

[11]  Shinichi Tanaka,et al.  High optical polarization ratio from semipolar (202¯1¯) blue-green InGaN/GaN light-emitting diodes , 2011 .

[12]  S. Denbaars,et al.  High-Power Blue-Violet Semipolar (202̄1̄) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2 , 2011 .

[13]  S. Denbaars,et al.  Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy , 2011 .

[14]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[15]  S. Denbaars,et al.  30-mW-Class High-Power and High-Efficiency Blue Semipolar (101̄1̄) InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique , 2010 .

[16]  S. Denbaars,et al.  Vertical Stand Transparent Light-Emitting Diode Architecture for High-Efficiency and High-Power Light-Emitting Diodes , 2010 .

[17]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[18]  A. Carlo,et al.  EFFECTS OF MACROSCOPIC POLARIZATION IN III-V NITRIDE MULTIPLE QUANTUM WELLS , 1999, cond-mat/9905186.

[19]  D. Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997, cond-mat/9705105.

[20]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .