On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations

We study the global regularity, for all time and all initial data in H1/2, of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the L2-scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the H1/2-Sobolev norm, allows us to demonstrate global existence and uniqueness, of space-periodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the H1/2 and the time average of the square of the H3/2 norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269–315, 1964; Rend. Semin. Mat. Univ. Padova 32:243–260, 1962), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.

[1]  I. Procaccia,et al.  Turbulence in noninteger dimensions by fractal Fourier decimation. , 2011, Physical review letters.

[2]  A. Pouquet,et al.  Rotating helical turbulence. I. Global evolution and spectral behavior , 2009, 0909.1272.

[3]  E. Titi,et al.  Global Existence and Uniqueness of Weak Solutions of 3-D Euler Equations with Helical Symmetry in the Absence of Vorticity Stretching , 2008, 0802.2131.

[4]  S. Kaniel,et al.  The initial value problem for the navier-stokes equations , 1966 .

[5]  Hiroshi Fujita,et al.  On the nonstationary Navier-Stokes system , 1962 .

[6]  Darryl D. Holm,et al.  Intermittency in the joint cascade of energy and helicity. , 2002, Physical review letters.

[7]  P. Ditlevsen,et al.  Cascades in helical turbulence. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  F. Waleffe The nature of triad interactions in homogeneous turbulence , 1992 .

[9]  Edriss S. Titi,et al.  Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .

[10]  Ольга Александровна Ладыженская,et al.  Шестая проблема тысячелетия: уравнения Навье - Стокса, существование и гладкость@@@Sixth problem of the millennium: Navier - Stokes equations, existence and smoothness , 2003 .

[11]  E. Titi,et al.  Invariant helical subspaces for the Navier-Stokes equations , 1990 .

[12]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[13]  F. Toschi,et al.  Helicity transfer in turbulent models , 1997, chao-dyn/9707019.

[14]  Pelz,et al.  Velocity-vorticity patterns in turbulent flow. , 1985, Physical review letters.

[15]  V. Sverák,et al.  Navier-Stokes Equations with Lower Bounds on the Pressure , 2002 .

[16]  S. Musacchio,et al.  Evidence for the double cascade scenario in two-dimensional turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Smith,et al.  Crossover from Two- to Three-Dimensional Turbulence. , 1996, Physical review letters.

[18]  van Gjf Gert-Jan Heijst,et al.  Two-Dimensional Navier–Stokes Turbulence in Bounded Domains , 2009 .

[19]  V. Sverák,et al.  Minimal initial data for potential Navier-Stokes singularities , 2009 .

[20]  Federico Toschi,et al.  Inverse energy cascade in three-dimensional isotropic turbulence. , 2011, Physical review letters.

[21]  T. Sideris,et al.  Turbulence properties and global regularity of a modified Navier–Stokes equation , 2012, 1205.5619.

[22]  U. Frisch,et al.  Helicity cascades in fully developed isotropic turbulence , 1973 .

[23]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[24]  Igor Kukavica,et al.  One component regularity for the Navier–Stokes equations , 2006 .

[25]  Hao Jia,et al.  Minimal L3-Initial Data for Potential Navier-Stokes Singularities , 2009, SIAM J. Math. Anal..

[26]  Guido Boffetta,et al.  Two-Dimensional Turbulence , 2012 .

[27]  Luca Biferale,et al.  SHELL MODELS OF ENERGY CASCADE IN TURBULENCE , 2003 .

[28]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[29]  Andrew J. Majda,et al.  The Beltrami spectrum for incompressible fluid flows , 1988 .

[30]  Luigi C. Berselli,et al.  Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .

[31]  Hiroko Morimoto,et al.  On the Navier-Stokes initial value problem , 1974 .

[32]  Edriss S. Titi,et al.  Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor , 2010, 1005.4463.

[33]  Edriss S. Titi,et al.  Global Existence and Uniqueness of Weak Solutions of Three-Dimensional Euler Equations with Helical Symmetry in the Absence of Vorticity Stretching , 2009, SIAM J. Math. Anal..

[34]  U. Frisch Turbulence: The Legacy of A. N. Kolmogorov , 1996 .

[35]  Edriss S. Titi,et al.  Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking , 2012, SIAM J. Math. Anal..

[36]  Los Alamos National Laboratory,et al.  The joint cascade of energy and helicity in three-dimensional turbulence , 2002, nlin/0206030.