On the Global Regularity of a Helical-Decimated Version of the 3D Navier-Stokes Equations
暂无分享,去创建一个
[1] I. Procaccia,et al. Turbulence in noninteger dimensions by fractal Fourier decimation. , 2011, Physical review letters.
[2] A. Pouquet,et al. Rotating helical turbulence. I. Global evolution and spectral behavior , 2009, 0909.1272.
[3] E. Titi,et al. Global Existence and Uniqueness of Weak Solutions of 3-D Euler Equations with Helical Symmetry in the Absence of Vorticity Stretching , 2008, 0802.2131.
[4] S. Kaniel,et al. The initial value problem for the navier-stokes equations , 1966 .
[5] Hiroshi Fujita,et al. On the nonstationary Navier-Stokes system , 1962 .
[6] Darryl D. Holm,et al. Intermittency in the joint cascade of energy and helicity. , 2002, Physical review letters.
[7] P. Ditlevsen,et al. Cascades in helical turbulence. , 1999, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] F. Waleffe. The nature of triad interactions in homogeneous turbulence , 1992 .
[9] Edriss S. Titi,et al. Regularity Criteria for the Three-dimensional Navier-Stokes Equations , 2008 .
[10] Ольга Александровна Ладыженская,et al. Шестая проблема тысячелетия: уравнения Навье - Стокса, существование и гладкость@@@Sixth problem of the millennium: Navier - Stokes equations, existence and smoothness , 2003 .
[11] E. Titi,et al. Invariant helical subspaces for the Navier-Stokes equations , 1990 .
[12] C. Doering,et al. Applied analysis of the Navier-Stokes equations: Index , 1995 .
[13] F. Toschi,et al. Helicity transfer in turbulent models , 1997, chao-dyn/9707019.
[14] Pelz,et al. Velocity-vorticity patterns in turbulent flow. , 1985, Physical review letters.
[15] V. Sverák,et al. Navier-Stokes Equations with Lower Bounds on the Pressure , 2002 .
[16] S. Musacchio,et al. Evidence for the double cascade scenario in two-dimensional turbulence. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Smith,et al. Crossover from Two- to Three-Dimensional Turbulence. , 1996, Physical review letters.
[18] van Gjf Gert-Jan Heijst,et al. Two-Dimensional Navier–Stokes Turbulence in Bounded Domains , 2009 .
[19] V. Sverák,et al. Minimal initial data for potential Navier-Stokes singularities , 2009 .
[20] Federico Toschi,et al. Inverse energy cascade in three-dimensional isotropic turbulence. , 2011, Physical review letters.
[21] T. Sideris,et al. Turbulence properties and global regularity of a modified Navier–Stokes equation , 2012, 1205.5619.
[22] U. Frisch,et al. Helicity cascades in fully developed isotropic turbulence , 1973 .
[23] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 2014 .
[24] Igor Kukavica,et al. One component regularity for the Navier–Stokes equations , 2006 .
[25] Hao Jia,et al. Minimal L3-Initial Data for Potential Navier-Stokes Singularities , 2009, SIAM J. Math. Anal..
[26] Guido Boffetta,et al. Two-Dimensional Turbulence , 2012 .
[27] Luca Biferale,et al. SHELL MODELS OF ENERGY CASCADE IN TURBULENCE , 2003 .
[28] V. Sverák,et al. Backward Uniqueness for Parabolic Equations , 2003 .
[29] Andrew J. Majda,et al. The Beltrami spectrum for incompressible fluid flows , 1988 .
[30] Luigi C. Berselli,et al. Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations , 2002 .
[31] Hiroko Morimoto,et al. On the Navier-Stokes initial value problem , 1974 .
[32] Edriss S. Titi,et al. Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor , 2010, 1005.4463.
[33] Edriss S. Titi,et al. Global Existence and Uniqueness of Weak Solutions of Three-Dimensional Euler Equations with Helical Symmetry in the Absence of Vorticity Stretching , 2009, SIAM J. Math. Anal..
[34] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov , 1996 .
[35] Edriss S. Titi,et al. Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking , 2012, SIAM J. Math. Anal..
[36] Los Alamos National Laboratory,et al. The joint cascade of energy and helicity in three-dimensional turbulence , 2002, nlin/0206030.