Extended resolution fluorescence microscopy.

Fluorescence microscopy is an essential tool of modern biology, but, like all forms of optical imaging, it is subject to physical limits on its resolving power. In recent years, several exciting techniques have been introduced to exceed these limits, including standing wave microscopy, 4Pi confocal microscopy, I5M and structured illumination microscopy. Several such techniques have been definitively demonstrated for the first time during the past year.

[1]  D A Agard,et al.  Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei. , 1989, Biophysical journal.

[2]  Pekka Hänninen,et al.  Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy , 1999 .

[3]  R Freimann,et al.  Development of a standing‐wave fluorescence microscope with high nodal plane flatness , 1997, Journal of microscopy.

[4]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[5]  Bernd Rinke,et al.  A versatile 2π‐tilting device for fluorescence microscopes , 1994 .

[6]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[7]  K Bahlmann,et al.  Three-photon excitation in fluorescence microscopy. , 1996, Journal of biomedical optics.

[8]  T. Wilson,et al.  Real time 3D fluorescence microscopy by two beam interference illumination , 1998 .

[9]  P. Shaw,et al.  Three‐dimensional optical microscopy using tilted views , 1990, Journal of microscopy.

[10]  Steffen Lindek,et al.  Single‐lens theta microscopy — a new implementation of confocal theta microscopy , 1997 .

[11]  Monty Glass,et al.  The experimental effect of detector size on confocal lateral resolution , 1991 .

[12]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[13]  E Gratton,et al.  Fluorescence lifetime imaging by asynchronous pump-probe microscopy. , 1995, Biophysical journal.

[14]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[15]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[16]  Brent Bailey,et al.  Image processing in 3D standing-wave fluorescence microscopy , 1996, Electronic Imaging.

[17]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[18]  Tony Wilson,et al.  Imaging properties of high aperture multiphoton fluorescence scanning optical microscopes , 1999 .

[19]  S W Hell,et al.  Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. , 1994, Optics letters.

[20]  B Bailey,et al.  Standing-wave excitation for fluorescence microscopy. , 1994, Trends in cell biology.

[21]  Neil,et al.  A light efficient optically sectioning microscope , 1998 .

[22]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[23]  M. Kozubek,et al.  Confocal microscopy by aperture correlation. , 1996, Optics letters.

[24]  D. L. Taylor,et al.  The actin-based nanomachine at the leading edge of migrating cells. , 1999, Biophysical journal.

[25]  Colin J. R. Sheppard,et al.  Comparison of three‐dimensional imaging properties between two‐photon and single‐photon fluorescence microscopy , 1995 .

[26]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[27]  David A. Agard,et al.  3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution , 1996, Electronic Imaging.

[28]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[29]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[30]  P. Verveer,et al.  A comparison of image restoration approaches applied to three‐dimensional confocal and wide‐field fluorescence microscopy , 1999, Journal of microscopy.

[31]  Martin Schrader,et al.  Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration , 1998 .

[32]  S. Hell,et al.  4Pi-confocal imaging in fixed biological specimens. , 1998, Biophysical journal.

[33]  J. Swoger,et al.  Single-lens theta microscopy: Resolution, efficiency and working distance , 1999 .

[34]  Daniel L. Farkas,et al.  Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy , 1994, Electronic Imaging.

[35]  Daniel L. Farkas,et al.  Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes , 1993 .

[36]  David A. Agard,et al.  Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses , 1995, Electronic Imaging.

[37]  S W Hell,et al.  4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. , 1998, Journal of structural biology.

[38]  S. Hell,et al.  Far-field fluorescence microscopy with repetitive excitation , 1999 .

[39]  Pekka Hänninen,et al.  Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research , 1995 .

[40]  Enrico Gratton,et al.  Spatial resolution in scanning pump-probe fluorescence microscopy , 1997 .

[41]  Steffen Lindek,et al.  Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy , 1994 .

[42]  W. Webb,et al.  Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes. , 1995, Applied optics.

[43]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[44]  T. Wilson,et al.  Optical sectioning in confocal fluorescent microscopes , 1989 .

[45]  S W Hell,et al.  4Pi confocal microscopy with alternate interference. , 1998, Optics letters.

[46]  Stefan W. Hell,et al.  Measurement of the 4Pi‐confocal point spread function proves 75 nm axial resolution , 1994 .

[47]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[48]  T. Wilson,et al.  The Role of the Pinhole in Confocal Imaging Systems , 1990 .

[49]  Christoph Cremer,et al.  HIGH PRECISION LOCALIZATION OF FLUORESCENT TARGETS IN THE NANOMETER RANGE BY SPATIALLY MODULATED EXCITATION FLUORESCENCE MICROSCOPY , 1998 .

[50]  S W Hell,et al.  Far‐field fluorescence microscopy with three‐dimensional resolution in the 100‐nm range , 1997, Journal of microscopy.

[51]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[52]  F S Fay,et al.  Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. , 1995, Science.