Computational materials: Multi-scale modeling and simulation of nanostructured materials

The paper provides details on the current approach to multi-scale modeling and simulation of advanced materials for structural applications. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation are highlighted and discussed.

[1]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[2]  G. Odegard Equivalent-Continuum Modeling of Nanostructured Materials , 2007 .

[3]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[4]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[5]  G. Odegard,et al.  Modeling and Characterization of a Graphite Nanoplatelet/Epoxy Composite , 2004 .

[6]  G. Odegard,et al.  Prediction of Mechanical Properties of Polymers With Various Force Fields , 2005 .

[7]  Gregory M. Odegard,et al.  Constitutive Modeling of Nanotube-Reinforced Polymer Composites , 2002 .

[8]  R. Zwanzig,et al.  Time-Correlation Functions and Transport Coefficients in Statistical Mechanics , 1965 .

[9]  C. Kittel Introduction to solid state physics , 1954 .

[10]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[11]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[12]  R. Jernigan,et al.  The transfer matrix method for lattice proteins—an application with cooperative interactions , 2004 .

[13]  M. Klein,et al.  Computer simulation studies of biomembranes using a coarse grain model , 2002 .

[14]  Pemra Doruker,et al.  A second generation of mapping/reverse mapping of coarse‐grained and fully atomistic models of polymer melts , 1999 .

[15]  ScienceDirect,et al.  Composites science and technology , 1985 .

[16]  Y. Fung Foundations of solid mechanics , 1965 .

[17]  Wolfgang G. Knauss,et al.  Perspectives in experimental solid mechanics , 2000 .

[18]  D. Bedrov,et al.  A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites , 2002 .

[19]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[20]  R. Feynman There's plenty of room at the bottom , 1999 .

[21]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[22]  Ahmed K. Noor,et al.  Continuum Modeling for Repetitive Lattice Structures , 1988 .

[23]  Tsu-Wei Chou,et al.  Strain and pressure sensing using single-walled carbon nanotubes , 2004 .

[24]  J. Hinkley,et al.  Molecular Simulations of the Imidization of Adsorbed Polyamic Acid , 2000 .

[25]  Dierk Raabe Challenges in computational materials science , 2002 .

[26]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[27]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[28]  Anna Walsh STUDIES IN MOLECULAR DYNAMICS , 1965 .

[29]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[30]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[31]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[32]  Kurt Kremer,et al.  Simulation of polymer melts. I. Coarse‐graining procedure for polycarbonates , 1998 .

[33]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[35]  Tsu-Wei Chou,et al.  Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach , 2004 .

[36]  G. Odegard,et al.  Predicting the Elastic Properties of CNF/Thermoset Polymer Composites Considering the Effect of Interphase and Fiber Waviness , 2017 .

[37]  Min Zhou,et al.  A new look at the atomic level virial stress: on continuum-molecular system equivalence , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Robert C. Cammarata,et al.  Nanomaterials : synthesis, properties, and applications , 1996 .

[39]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[40]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[41]  Michael Ortiz,et al.  Hierarchical modeling in the mechanics of materials , 2000 .

[42]  A. Mukherjee,et al.  Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? , 2005 .

[43]  A. Eringen,et al.  LINEAR THEORY OF MICROPOLAR ELASTICITY , 1965 .

[44]  Monte Carlo Simulation of Endlinking Oligomers , 1998 .

[45]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[46]  Jeffrey A. Hinkley,et al.  Crystallization of Stretched Polyimides: A Structure-Property Study , 2002 .

[47]  Melvin S. Anderson,et al.  Continuum Models for Beam- and Platelike Lattice Structures , 1978 .

[48]  Gregory M. Odegard,et al.  Modeling of the mechanical properties of nanoparticle/polymer composites , 2005 .

[49]  Rajiv K. Kalia,et al.  ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations , 2002 .

[50]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[51]  G. Odegarda,et al.  The stress – strain behavior of polymer – nanotube composites from molecular dynamics simulation , 2003 .

[52]  R.K. Kalia,et al.  Multiscale simulation of nanosystems , 2001, Comput. Sci. Eng..

[53]  G. Odegard,et al.  THE EFFECT OF CHEMICAL FUNCTIONALIZATION ON MECHANICAL PROPERTIES OF NANOTUBE/POLYMER COMPOSITES , 2003 .

[54]  D. C. Drucker,et al.  Thoughts on the present and future interrelation of theoretical and experimental mechanics , 1968 .

[55]  Tsu-Wei Chou,et al.  Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces , 2003 .

[56]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[57]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[58]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[59]  Kurt Kremer,et al.  Multiscale Problems in Polymer Science: Simulation Approaches , 2001 .

[60]  G. E. Mase,et al.  Schaum's outline of theory and problems of continuum mechanics , 1970 .

[61]  Jeffrey A. Hinkley,et al.  Molecular Modeling of the Poling of Piezoelectric Polyimides , 1999 .

[62]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[63]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[64]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[65]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[66]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[67]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[68]  J. Dow,et al.  Continuum Models of Space Station Structures , 1989 .

[69]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[70]  Equivalent continuum models of large platelike lattice structures , 1994 .

[71]  Tsu-Wei Chou,et al.  Multiscale modeling of carbon nanotube reinforced polymer composites. , 2003, Journal of nanoscience and nanotechnology.

[72]  Michael Ortiz,et al.  Quasicontinuum simulation of fracture at the atomic scale , 1998 .

[73]  Henry T. Y. Yang Finite Element Structural Analysis , 1985 .

[74]  Kurt Kremer,et al.  Bridging the Gap Between Atomistic and Coarse-Grained Models of Polymers: Status and Perspectives , 2000 .

[75]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[76]  P. Harris CARBON NANOTUBES AND RELATED STRUCTURES , 1999 .

[77]  E. B. Tadmor,et al.  Quasicontinuum models of interfacial structure and deformation , 1998 .

[78]  Michael Ortiz,et al.  Mixed Atomistic and Continuum Models of Deformation in Solids , 1996 .

[79]  Multi-scale modeling of polyimides , 2004 .

[80]  C. T. Sun,et al.  Global-local approach to solving vibration of large truss structures , 1990 .

[81]  J. L. Bogdanoff,et al.  ON THE DERIVATION OF EQUIVALENT SIMPLE MODELS FOR BEAM- AND PLATE-LIKE STRUCTURES IN DYNAMIC ANALYSIS , 1981 .

[82]  S. Frankland,et al.  Transverse mechanical properties of single-walled carbon nanotube crystals. Part I: determination of elastic moduli , 2003 .

[83]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[84]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .