Using SCUBA to place upper limits on arcsecond-scale cosmic microwave background anisotropies at 850 μm

function, with a coherence angle of about 20‐25 arcsec. These results could easily be reinterpreted in terms of any other fluctuating sky signal. This is currently the best limit for these scales at high frequency, and comparable to limits at similar angular scales in the radio. Even with such a modest data set, it is possible to put a constraint on the slope of the SCUBA counts at the faint end, since even randomly distributed sources would lead to fluctuations. Future analysis of sky correlations in more extensive data sets ought to yield detections, and hence additional information on source counts and clustering.

[1]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[2]  Martin White,et al.  Window functions for CMB experiments , 1994, astro-ph/9402037.

[3]  R. Bond,et al.  Signal-to-noise eigenmode analysis of the two-year COBE maps. , 1994, Physical review letters.

[4]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[5]  P. Andreani ARCMINUTE SKY FLUCTUATIONS AT 1.25 MILLIMETERS , 1994 .

[6]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[7]  Tim Jenness,et al.  Removing sky contributions from SCUBA data , 1998, Astronomical Telescopes and Instrumentation.

[8]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[9]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[10]  Simon J. E. Radford Isotropy of the cosmic background radiation at 3.4 millimeters with 10 resolution , 1993 .

[11]  L. Krauss CMB anisotropies two years after COBE: observations, theory and the future , 1994 .

[12]  L. Knox Cosmic Microwave Background Anisotropy Observing Strategy Assessment , 1996, astro-ph/9606066.

[13]  L. Cowie,et al.  Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift , 1998, Nature.

[14]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[15]  Edward B. Fomalont,et al.  Small-Scale Cosmic Microwave Background Observations at 8.4 GHz , 1997 .

[16]  An Upper Limit to Arcminute-Scale Anisotropy in the Cosmic Microwave Background Radiation at 142 GHz , 1997, astro-ph/9702196.

[17]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[18]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.

[19]  A. N. Lasenby,et al.  An upper limit on the fine-scale anisotropy of the cosmic background radiation at 800 μm , 1993 .

[20]  D. Emerson,et al.  Multi-feed systems for radio telescopes , 1995 .

[21]  J. Kneib,et al.  Erratum: The history of star formation in dusty galaxies , 1998, astro-ph/9806062.

[22]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[23]  S. Myers,et al.  A limit of the anisotropy of the microwave background radiation on arc minute scales , 1989 .

[24]  B. Zuckerman,et al.  Submillimetre images of dusty debris around nearby stars , 1998, Nature.

[25]  Hilo,et al.  Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field , 1998, astro-ph/9806297.