Video-rate chemical identification and visualization with snapshot hyperspectral imaging

Hyperspectral imaging has important benefits in remote sensing and target discrimination applications. This paper describes a class of snapshot-mode hyperspectral imaging systems which utilize a unique optical processor that provides video-rate hyperspectral datacubes. This system consists of numerous parallel optical paths which collect the full threedimensional (two spatial, one spectral) hyperspectral datacube with each video frame and are ideal for recording data from transient events, or on unstable platforms. We will present the results of laboratory and field-tests for several of these imagers operating at visible, near-infrared, MWIR and LWIR wavelengths. Measurement results for nitrate detection and identification as well as additional chemical identification and analysis will be presented.