Negative temperatures and the definition of entropy

The concept of negative temperature has recently received renewed interest in the context of debates about the correct definition of the thermodynamic entropy in statistical mechanics. Several researchers have identified the thermodynamic entropy exclusively with the “volume entropy” suggested by Gibbs, and have further concluded that by this definition, negative temperatures violate the principles of thermodynamics. We disagree with these conclusions. We demonstrate that volume entropy is inconsistent with the postulates of thermodynamics for systems with non-monotonic energy densities, while a definition of entropy based on the probability distributions of macroscopic variables does satisfy the postulates of thermodynamics. Our results confirm that negative temperature is a valid extension of thermodynamics.

[1]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[2]  Arieh Ben-Naim,et al.  A Farewell to Entropy:Statistical Thermodynamics Based on Information , 1992 .

[3]  M. Campisi Fluctuation relation for quantum heat engines and refrigerators , 2014, 1403.8040.

[4]  Dennis Dieks,et al.  Identical Quantum Particles and Weak Discernibility , 2008 .

[5]  E. Jaynes The Gibbs Paradox , 1992 .

[6]  Robert H. Swendsen Statistical Mechanics of Classical Distinguishable Particles , 2003 .

[7]  H. Peters,et al.  Statistics of Distinguishable Particles and Resolution of the Gibbs Paradox of the First Kind , 2010 .

[8]  J. Poulter,et al.  In defense of negative temperature. , 2015, Physical review. E.

[9]  S. Hilbert,et al.  2 2 A ug 2 01 4 Reply to Schneider et al . , 2014 .

[10]  H. Peters,et al.  Demonstration and resolution of the Gibbs paradox of the first kind , 2013, 1306.4638.

[11]  Peter Hänggi,et al.  Thermodynamic laws in isolated systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Chi Ho Cheng Thermodynamics of the System of Distinguishable Particles , 2009, Entropy.

[13]  P. Hänggi,et al.  Thermostated Hamiltonian dynamics with log oscillators. , 2013, The journal of physical chemistry. B.

[14]  S. Mandt,et al.  Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices. , 2010, Physical review letters.

[15]  Michele Campisi,et al.  Construction of microcanonical entropy on thermodynamic pillars. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Michele Campisi,et al.  Statistical mechanical proof of the second law of thermodynamics based on volume entropy , 2007, 0704.2567.

[17]  A. Smerzi,et al.  Phase transitions at high energy vindicate negative microcanonical temperature. , 2015, Physical review. E.

[18]  Michele Campisi,et al.  Derivation of the Boltzmann principle , 2009, 0911.2070.

[19]  Stefan Hilbert,et al.  Consistent thermostatistics forbids negative absolute temperatures , 2013, Nature Physics.

[20]  How physicists disagree on the meaning of entropy , 2011 .

[21]  A. Bach Boltzmann's probability distribution of 1877 , 1990, Archive for History of Exact Sciences.

[22]  R. Swendsen Footnotes to the history of statistical mechanics: In Boltzmann’s words , 2010 .

[23]  P. Enders Equality and Identity and (In)distinguishability in Classical and Quantum Mechanics from the Point of View of Newton's Notion of State , 2006 .

[24]  Indistinguishable classical particles , 1996 .

[25]  Peter Hänggi,et al.  Meaning of temperature in different thermostatistical ensembles , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Daan Frenkel,et al.  Gibbs, Boltzmann, and negative temperatures , 2014, 1403.4299.

[27]  M. Campisi Microcanonical phase transitions in small systems , 2007, 0709.1082.

[28]  Norman F. Ramsey,et al.  Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures , 1956 .

[29]  Robert H. Swendsen Unnormalized probability: A different view of statistical mechanics , 2014 .

[30]  Jian-Sheng Wang,et al.  Critique of the Gibbs volume entropy and its implication , 2015, 1507.02022.

[31]  S. S. Hodgman,et al.  Negative Absolute Temperature for Motional Degrees of Freedom , 2012, Science.

[32]  Stefan Hilbert,et al.  Phase transitions in small systems: Microcanonical vs. canonical ensembles , 2006 .

[33]  Ariel Caticha,et al.  Lectures on Probability, Entropy, and Statistical Physics , 2008, ArXiv.

[34]  Jian-Sheng Wang,et al.  Gibbs volume entropy is incorrect. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  D. Hestenes Entropy and Indistinguishability , 1970 .

[36]  J Miguel Rubi,et al.  Communication: system-size scaling of Boltzmann and alternate Gibbs entropies. , 2014, The Journal of chemical physics.

[37]  Robert H. Swendsen,et al.  Statistical Mechanics of Classical Systems with Distinguishable Particles , 2002 .

[38]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[39]  Berdichevsky,et al.  Negative temperature of vortex motion. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[40]  On the explanation for quantum statistics , 2005, quant-ph/0511136.

[41]  Víctor Romero-Rochín,et al.  Nonexistence of equilibrium states at absolute negative temperatures. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[43]  Edward M. Purcell,et al.  A Nuclear Spin System at Negative Temperature , 1951 .

[44]  Robert H. Swendsen,et al.  An Introduction to Statistical Mechanics and Thermodynamics , 2012 .

[45]  Stefan Hilbert,et al.  Reply to Frenkel and Warren [arXiv:1403.4299v1] , 2014 .

[46]  Dennis Dieks,et al.  Is There a Unique Physical Entropy? Micro versus Macro , 2012, 1209.1025.

[47]  Dragos-Victor Anghel The Stumbling Block of the Gibbs Entropy: the Reality of the Negative Absolute Temperatures , 2016 .

[48]  Robert H. Swendsen,et al.  Choosing a Definition of Entropy that Works , 2012 .

[49]  Michele Campisi,et al.  On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem , 2005 .

[50]  Dennis Dieks,et al.  The Gibbs paradox and the distinguishability of identical particles , 2010, 1012.4111.

[51]  Angelo Vulpiani,et al.  A consistent description of fluctuations requires negative temperatures , 2015, 1509.07369.

[52]  R. B. Redmon,et al.  Identity , 2021, Notre Dame J. Formal Log..

[53]  J. Lielmezs,et al.  Negative Temperatures , 1966, Nature.

[54]  Comment on “The Gibbs paradox and the distinguishability of identical particles,” by M. A. M. Versteegh and D. Dieks [Am. J. Phys. 79, 741–746 (2011)] , 2012 .

[55]  Robert H. Swendsen,et al.  Gibbs' Paradox and the Definition of Entropy , 2008, Entropy.

[56]  John F. Nagle,et al.  In Defense of Gibbs and the Traditional Definition of the Entropy of Distinguishable Particles , 2010, Entropy.

[57]  I. Sokolov Not hotter than hot , 2013, Nature Physics.

[58]  R. Clausius,et al.  Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie , 1854 .

[59]  Response to Nagle’s Criticism of My Proposed Definition of the Entropy , 2004 .

[60]  Roberto Franzosi,et al.  On the dispute between Boltzmann and Gibbs entropy , 2016, 1601.01509.

[61]  Peter Enders Gibbs' Paradox in the Light of Newton's Notion of State , 2009, Entropy.

[62]  J. Nagle Regarding the Entropy of Distinguishable Particles , 2004 .

[63]  Immanuel Bloch,et al.  Comment on "Consistent thermostatistics forbids negative absolute temperatures" , 2014, 1407.4127.

[64]  Robert H. Swendsen,et al.  Statistical mechanics of colloids and Boltzmann’s definition of the entropy , 2006 .