Negative temperatures and the definition of entropy
暂无分享,去创建一个
[1] M. Planck. Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .
[2] Arieh Ben-Naim,et al. A Farewell to Entropy:Statistical Thermodynamics Based on Information , 1992 .
[3] M. Campisi. Fluctuation relation for quantum heat engines and refrigerators , 2014, 1403.8040.
[4] Dennis Dieks,et al. Identical Quantum Particles and Weak Discernibility , 2008 .
[5] E. Jaynes. The Gibbs Paradox , 1992 .
[6] Robert H. Swendsen. Statistical Mechanics of Classical Distinguishable Particles , 2003 .
[7] H. Peters,et al. Statistics of Distinguishable Particles and Resolution of the Gibbs Paradox of the First Kind , 2010 .
[8] J. Poulter,et al. In defense of negative temperature. , 2015, Physical review. E.
[9] S. Hilbert,et al. 2 2 A ug 2 01 4 Reply to Schneider et al . , 2014 .
[10] H. Peters,et al. Demonstration and resolution of the Gibbs paradox of the first kind , 2013, 1306.4638.
[11] Peter Hänggi,et al. Thermodynamic laws in isolated systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Chi Ho Cheng. Thermodynamics of the System of Distinguishable Particles , 2009, Entropy.
[13] P. Hänggi,et al. Thermostated Hamiltonian dynamics with log oscillators. , 2013, The journal of physical chemistry. B.
[14] S. Mandt,et al. Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices. , 2010, Physical review letters.
[15] Michele Campisi,et al. Construction of microcanonical entropy on thermodynamic pillars. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Michele Campisi,et al. Statistical mechanical proof of the second law of thermodynamics based on volume entropy , 2007, 0704.2567.
[17] A. Smerzi,et al. Phase transitions at high energy vindicate negative microcanonical temperature. , 2015, Physical review. E.
[18] Michele Campisi,et al. Derivation of the Boltzmann principle , 2009, 0911.2070.
[19] Stefan Hilbert,et al. Consistent thermostatistics forbids negative absolute temperatures , 2013, Nature Physics.
[20] How physicists disagree on the meaning of entropy , 2011 .
[21] A. Bach. Boltzmann's probability distribution of 1877 , 1990, Archive for History of Exact Sciences.
[22] R. Swendsen. Footnotes to the history of statistical mechanics: In Boltzmann’s words , 2010 .
[23] P. Enders. Equality and Identity and (In)distinguishability in Classical and Quantum Mechanics from the Point of View of Newton's Notion of State , 2006 .
[24] Indistinguishable classical particles , 1996 .
[25] Peter Hänggi,et al. Meaning of temperature in different thermostatistical ensembles , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[26] Daan Frenkel,et al. Gibbs, Boltzmann, and negative temperatures , 2014, 1403.4299.
[27] M. Campisi. Microcanonical phase transitions in small systems , 2007, 0709.1082.
[28] Norman F. Ramsey,et al. Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures , 1956 .
[29] Robert H. Swendsen. Unnormalized probability: A different view of statistical mechanics , 2014 .
[30] Jian-Sheng Wang,et al. Critique of the Gibbs volume entropy and its implication , 2015, 1507.02022.
[31] S. S. Hodgman,et al. Negative Absolute Temperature for Motional Degrees of Freedom , 2012, Science.
[32] Stefan Hilbert,et al. Phase transitions in small systems: Microcanonical vs. canonical ensembles , 2006 .
[33] Ariel Caticha,et al. Lectures on Probability, Entropy, and Statistical Physics , 2008, ArXiv.
[34] Jian-Sheng Wang,et al. Gibbs volume entropy is incorrect. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[35] D. Hestenes. Entropy and Indistinguishability , 1970 .
[36] J Miguel Rubi,et al. Communication: system-size scaling of Boltzmann and alternate Gibbs entropies. , 2014, The Journal of chemical physics.
[37] Robert H. Swendsen,et al. Statistical Mechanics of Classical Systems with Distinguishable Particles , 2002 .
[38] H. Callen. Thermodynamics and an Introduction to Thermostatistics , 1988 .
[39] Berdichevsky,et al. Negative temperature of vortex motion. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[40] On the explanation for quantum statistics , 2005, quant-ph/0511136.
[41] Víctor Romero-Rochín,et al. Nonexistence of equilibrium states at absolute negative temperatures. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[42] Y. Sinai,et al. Dynamical systems with elastic reflections , 1970 .
[43] Edward M. Purcell,et al. A Nuclear Spin System at Negative Temperature , 1951 .
[44] Robert H. Swendsen,et al. An Introduction to Statistical Mechanics and Thermodynamics , 2012 .
[45] Stefan Hilbert,et al. Reply to Frenkel and Warren [arXiv:1403.4299v1] , 2014 .
[46] Dennis Dieks,et al. Is There a Unique Physical Entropy? Micro versus Macro , 2012, 1209.1025.
[47] Dragos-Victor Anghel. The Stumbling Block of the Gibbs Entropy: the Reality of the Negative Absolute Temperatures , 2016 .
[48] Robert H. Swendsen,et al. Choosing a Definition of Entropy that Works , 2012 .
[49] Michele Campisi,et al. On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem , 2005 .
[50] Dennis Dieks,et al. The Gibbs paradox and the distinguishability of identical particles , 2010, 1012.4111.
[51] Angelo Vulpiani,et al. A consistent description of fluctuations requires negative temperatures , 2015, 1509.07369.
[52] R. B. Redmon,et al. Identity , 2021, Notre Dame J. Formal Log..
[53] J. Lielmezs,et al. Negative Temperatures , 1966, Nature.
[55] Robert H. Swendsen,et al. Gibbs' Paradox and the Definition of Entropy , 2008, Entropy.
[56] John F. Nagle,et al. In Defense of Gibbs and the Traditional Definition of the Entropy of Distinguishable Particles , 2010, Entropy.
[57] I. Sokolov. Not hotter than hot , 2013, Nature Physics.
[58] R. Clausius,et al. Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie , 1854 .
[59] Response to Nagle’s Criticism of My Proposed Definition of the Entropy , 2004 .
[60] Roberto Franzosi,et al. On the dispute between Boltzmann and Gibbs entropy , 2016, 1601.01509.
[61] Peter Enders. Gibbs' Paradox in the Light of Newton's Notion of State , 2009, Entropy.
[62] J. Nagle. Regarding the Entropy of Distinguishable Particles , 2004 .
[63] Immanuel Bloch,et al. Comment on "Consistent thermostatistics forbids negative absolute temperatures" , 2014, 1407.4127.
[64] Robert H. Swendsen,et al. Statistical mechanics of colloids and Boltzmann’s definition of the entropy , 2006 .