Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors

ABSTRACT The mission planning in airborne Photogrammetry and Remote Sensing applications, depending on the system of acquisition and by the adopted platform (such as rotary and fixed wing aircrafts, glider, airship, manned or unmanned), is the first and essential step to ensure the success of a survey mission. The purpose of this paper is to provide an overview on mission planning techniques using passive optical sensors. The basic concepts related to the usage of the most common sensor technologies are described, along with the several possible scenarios that may be afforded by using modern airborne sensors. Several examples of flight plans are illustrated and discussed to highlight correct methods, procedures and tools for data acquisition in the case of different types of manned and unmanned airborne missions. In particular, the flight planning with more recent technologies of digital passive optical airborne sensors will be dealt with, including frame cameras and multi-/hyperspectral push-broom sensors. Furthermore, in order to ensure the complete success of an airborne mission, some up-to-date solutions to know in advance the weather conditions (cloud cover, height of the sun, wind, etc.) and the GNSS satellite configuration are illustrated.

[1]  Gerald Gerlach,et al.  Thermal Infrared Sensors: Theory, Optimisation and Practice , 2011 .

[2]  Noah Snavely,et al.  Scene Reconstruction and Visualization from Internet Photo Collections: A Survey , 2011, IPSJ Trans. Comput. Vis. Appl..

[3]  A. Rizaldy,et al.  DIRECT GEOREFERENCING : A NEW STANDARD IN PHOTOGRAMMETRY FOR HIGH ACCURACY MAPPING , 2012 .

[4]  F. Nex,et al.  UAV for 3D mapping applications: a review , 2014 .

[5]  P. K Varshney,et al.  Advanced image processing techniques for remotely sensed hyperspectral data : with 128 figures and 30 tables , 2004 .

[6]  A. Ip,et al.  AN OPTIMALLY INTEGRATED DIRECT GEOREFERENCING AND FLIGHT MANAGEMENT SYSTEM FOR INCREASED PRODUCTIVITY OF AIRBORNE MAPPING AND REMOTE SENSING , 2008 .

[7]  E. Miguel,et al.  THE PROCESSING OF CASI-1500I DATA AT INTA PAF , 2014 .

[8]  Luigi Barazzetti,et al.  Filtering vegetation from terrestrial point clouds with low-cost near infrared cameras , 2011 .

[9]  Swades De,et al.  RF energy harvester-based wake-up receiver , 2015, 2015 IEEE SENSORS.

[10]  Andrea Faber,et al.  Introduction To Modern Photogrammetry , 2016 .

[11]  Pamela Elizabeth Clark,et al.  Principles of Remote Sensing , 2010 .

[12]  Jun Chen,et al.  Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book , 2008 .

[13]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[14]  G. Natarajan Ground control stations for unmanned air vehicles (Review Paper) , 2001 .

[15]  M. Gruber,et al.  CALIBRATING THE NEW ULTRACAM OSPREY OBLIQUE AERIAL SENSOR , 2014 .

[16]  Raymond F. Kokaly,et al.  Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection , 2008 .

[17]  Dalibor Bartoněk,et al.  The use of GIS technology for planning of GNSS measurement , 2014 .

[18]  Ola Friman,et al.  Anisotropic Scattered Data Interpolation for Pushbroom Image Rectification , 2014, IEEE Transactions on Image Processing.

[19]  F. Nex,et al.  OBLIQUE MULTI-CAMERA SYSTEMS - ORIENTATION AND DENSE MATCHING ISSUES , 2014 .

[20]  Francisco Javier Mesas-Carrascosa,et al.  Positional Quality Assessment of Orthophotos Obtained from Sensors Onboard Multi-Rotor UAV Platforms , 2014, Sensors.

[21]  Antonio Filippone,et al.  Comprehensive analysis of transport aircraft flight performance , 2008 .

[22]  Y. Kerr,et al.  Operational readiness of microwave remote sensing of soil moisture for hydrologic applications , 2007 .

[23]  H. Wegmann Image Orientation by Combined ( A ) AT with GPS and IMU , 2002 .

[24]  S. B. Mah,et al.  IMPLEMENTATION OF AN UNMANNED AERIAL VEHICLE SYSTEM FOR LARGE SCALE MAPPING , 2015 .

[25]  George Vosselman,et al.  Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.

[26]  J. Höhle DEM GENERATION BY MEANS OF NEW DIGITAL AERIAL CAMERAS , 2013 .

[27]  Charles K. Toth Sensor integration in airborne mapping , 2002, IEEE Trans. Instrum. Meas..

[28]  Joachim Höhle,et al.  Photogrammetric Measurements in Oblique Aerial Images , 2008 .

[29]  R. Baumann,et al.  Calibration of 3-D wind measurements on a single-engine research aircraft , 2015 .

[30]  James E. Fowler,et al.  Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[31]  K. Kraus Photogrammetry: Geometry from Images and Laser Scans , 2007 .

[32]  L. Guanter,et al.  Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data , 2007 .

[33]  Fabio Remondino,et al.  Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects , 2011, Optical Metrology.

[34]  Marc Olano,et al.  Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure , 2015, Remote. Sens..

[35]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[36]  Wu Yundong,et al.  A Contrast among Experiments in Three Low-altitude Unmanned Aerial Vehicles Photography : Security , Quality & Efficiency , 2008 .

[37]  E. Falkner Aerial mapping : methods and applications , 1995 .

[38]  R. Santamaria,et al.  Impact of vertical deflection on direct georeferencing of airborne images , 2015 .

[39]  L. P. Pellinen Physical Geodesy , 1972 .

[40]  M. Mostafa,et al.  GPS/IMU products - the Applanix approach , 2001 .

[41]  Henri Eisenbeiss,et al.  Investigation of uav systems and flight modes for photogrammetric applications , 2011 .

[42]  Trent Thomas,et al.  Green Falcon IV: An Unmanned Aerial System and an integrated Wireless Sensor Network for remote sensing tasks , 2016 .

[43]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[44]  I. Vorovencii The hyperspectral sensors used in satellite and aerial remote sensing. , 2009 .

[45]  D. Fritsch,et al.  ON THE PREFORMANCE OF DIGITAL AIRBORNE PUSHBROOM CAMERAS FOR PHOTOGRAMMETRIC DATA PROCESSING - A CASE STUDY , 2000 .

[46]  A. Vitti,et al.  A web processing service for GNSS realistic planning , 2013 .

[47]  K. Oost,et al.  Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms , 2016 .

[48]  Yan Xu,et al.  Applications of GPS Theory and Algorithms , 2016 .

[49]  Karen Anderson,et al.  Advances in Photogrammetry, Remote Sensing and Spatial Information Sciences: 2008 ISPRS Congress Book, edited by Z. Li, J. Chen, and E. Baltsavias , 2009, Int. J. Geogr. Inf. Sci..

[50]  M.J.P.M. Lemmens Digital Oblique Aerial Cameras (1): A Survey of Features and Systems , 2014 .

[51]  S. Gandolfi,et al.  SKYPLOT_DEM: a tool for GNSS planning and simulations , 2011 .

[52]  Christian Eling,et al.  Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs , 2015, Sensors.

[53]  Z. M. Zhang,et al.  GEOMETRIC CORRECTION OF AIRBORNE LINEAR ARRAY IMAGE BASED ON BIAS MATRIX , 2013 .

[54]  Emmanuel P. Baltsavias,et al.  A comparison between photogrammetry and laser scanning , 1999 .

[55]  M. Cramer Integrated GPS / inertial and digital aerial triangulation-recent test results , 2003 .

[56]  C. Georgi,et al.  JAS: The Next Generation Digital Aerial Scanner , 2006 .

[57]  G. R. Heath HOT SPOT DETERMINATION , 1973 .

[58]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[59]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .

[60]  M. Gerkeb SUB-CAMERA CALIBRATION OF A PENTA-CAMERA , 2016 .

[61]  Ying Yang,et al.  Stable Imaging and Accuracy Issues of Low-Altitude Unmanned Aerial Vehicle Photogrammetry Systems , 2016, Remote. Sens..

[62]  Mohamed M. R. Mostafa,et al.  Boresight calibration of integrated inertial/camera systems , 2001 .

[63]  Alfred Kleusberg,et al.  A COMPARISON OF TWO INTEGRATED AIRBORNE POSITIONING AND ORIENTATION SYSTEMS , 2002 .

[64]  M. Pepe,et al.  A MATLAB GEODETIC SOFTWARE FOR PROCESSING AIRBORNE LIDAR BATHYMETRY DATA , 2015 .

[65]  Seck Fai Cheak Detecting near-UV and near-IR wavelengths with the FOVEON image sensor , 2004 .

[66]  M. Madani,et al.  ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM , 2012 .

[67]  Kreuztal JENS KREMER,et al.  Contour Flying for Airborne Data Acquisition , 2013 .

[68]  Massimiliano Pepe,et al.  Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates , 2016, Sensors.

[69]  Flint Dold Leica Geosystems Photogrammetric Sensor and Workflow Developments , 2007 .

[70]  M. Cree,et al.  AN EVALUATION OF TIME-OF-FLIGHT RANGE CAMERAS FOR CLOSE RANGE METROLOGY APPLICATIONS , 2010 .

[71]  F Dell'Endice Improving the performance of hyperspectral pushbroom imaging spectrometers for specific science applications , 2008 .

[72]  S. El-Hakim,et al.  Critical Factors and Configurations for Practical 3 D Image-Based Modeling , 2003 .

[73]  M. Mostafa,et al.  ISAT Direct Exterior Orientation QA / QC Strategy Using POS Data , 2001 .

[74]  N. Haala,et al.  DIRECT GEOREFERENCING USING GPS/INERTIAL EXTERIOR ORIENTATIONS FOR PHOTOGRAMMETRIC APPLICATIONS , 2000 .

[75]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[76]  Ming Fatt. Yuen Dilution of Precision (DOP) calculation for mission planning purposes , 2009 .

[77]  M. Gruber,et al.  OPERATION OF THE ULTRACAMD TOGETHER WITH CCNS 4 / AEROCONTROL – FIRST EXPERIENCES AND RESULTS , 2004 .

[78]  Jan Skaloud,et al.  PHOTOGRAMMETRIC MISSION PLANNER FOR RPAS , 2015 .

[79]  Dubravko Gajski,et al.  GPS aided INS - Integration and Application in the Croatian Sky , 2008 .

[80]  Zhang Li,et al.  Automatic DTM Generation from Three-Line-Scanner (TLS) Images , 2002 .

[81]  G. Kemper,et al.  NEW AIRBORNE SENSORS AND PLATFORMS FOR SOLVING SPECIFIC TASKS IN REMOTE SENSING , 2012 .

[82]  Massimiliano Pepe,et al.  Two Approaches for Dense DSM Generation from Aerial Digital Oblique Camera System , 2016, GISTAM.

[83]  Gordon Petrie,et al.  Airborne digital imaging technology: a new overview , 2007 .

[84]  John J. Degnan,et al.  Moderate to high altitude, single photon sensitive, 3D imaging lidars , 2014, Sensing Technologies + Applications.

[85]  C. Ginzler,et al.  Snow depth mapping in high-alpine catchments using digital photogrammetry , 2015 .

[86]  Lingbo Yang,et al.  Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors , 2015, Remote. Sens..

[87]  Mmr Mostafa,et al.  PRECISION AIRCRAFT GPS POSITIONING USING CORS , 2002 .

[88]  Roland Bless,et al.  Network Design , 2011, 4WARD Project.

[89]  K. Jacobsen,et al.  Sub-camera calibration of a Penta-camera , 2016 .

[90]  Klaus Neumann,et al.  CMOS IMAGING SENSOR TECHNOLOGY FOR AERIAL MAPPING CAMERAS , 2016 .

[91]  J. Lutes,et al.  DIRECT GEOREFERENCING ON SMALL UNMANNED AERIAL PLATFORMS FOR IMPROVED RELIABILITY AND ACCURACY OF MAPPING WITHOUT THE NEED FOR GROUND CONTROL POINTS , 2015 .

[92]  Ye Tao,et al.  Ground Control Station Development for Autonomous UAV , 2008, ICIRA.