Novel Anisotropy of Upper Critical Fields in Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$

Studying the upper critical field ($\mu_0$$H$$_{\rm{c2}}$) and its anisotropy of superconductors is of great importance because it can provide an unusual insight into the pair-breaking mechanism. Since Fe$_{1+y}$Te$_{1-x}$Se$_x$ exhibits the high $\mu_0$$H$$_{\rm{c2}}$ and small anisotropic superconductivity, it has attracted considerable attention. However, some issues related to $\mu_0$$H$$_{\rm{c2}}$ are still unknown, including the effect of excess Fe content on $\mu_0$$H$$_{\rm{c2}}$ behavior and the origin of the crossover of the $\mu_0H_{\rm{c2}}^c $ -- $ T$ and $\mu_0H_{\rm{c2}}^{ab}$ -- $T$ curves. In this work, the value of $\mu_0$$H$$_{\rm{c2}}$ of Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ single crystals with controlled amounts of excess Fe was obtained by resistivity measurements over a wide range of temperatures down to $\sim$ 1.5 K, and magnetic fields up to $\sim$ 60 T. The crossover of the $\mu_0H_{\rm{c2}}^c $ -- $ T$ and $\mu_0H_{\rm{c2}}^{ab}$ -- $T$ curves was found to be independent of the excess Fe content. The angle dependence of $\mu_0H_{\rm{c2}}$ was also checked. The $\mu_0H_{\rm{c2}}(\theta)$ symmetry at higher temperature near $T_c$ could be fitted by anisotropic G-L model, and novel fourfold symmetry of $\mu_0H_{\rm{c2}}$ at lower temperature was found. Based on our spin-locking pairing model, the crossover behavior originates from the anisotropic spin-paramagnetic effect, and the novel fourfold symmetry of $\mu_0H_{\rm{c2}}$ could be understood by our extended anisotropic G-L model.

[1]  Zengwei Zhu,et al.  Anisotropic critical current density and flux pinning mechanism of Fe 1+y Te0.6Se0.4 single crystals , 2021, Superconductor Science and Technology.

[2]  E. Hassinger,et al.  Field-induced transition within the superconducting state of CeRh2As2 , 2021, Science.

[3]  Zengwei Zhu,et al.  Comparative study of superconducting and normal-state anisotropy in Fe1+yTe0.6Se0.4 superconductors with controlled amounts of interstitial excess Fe , 2021, 2105.10093.

[4]  L. Pi,et al.  Disorder-robust high-field superconducting phase of FeSe single crystals , 2021, Physical Review B.

[5]  J. Wosnitza,et al.  Improved accuracy in high-frequency AC transport measurements in pulsed high magnetic fields. , 2020, The Review of scientific instruments.

[6]  Benhai Yu,et al.  Flux pinning and the vortex phase diagram in optimized CaKFe4As4 single crystals fabricated by a one-step method , 2020, Superconductor Science and Technology.

[7]  Z. Ren,et al.  Upper critical field and its anisotropy in RbCr3As3 , 2019, Physical Review B.

[8]  M. Khodas,et al.  Ising superconductors: Interplay of magnetic field, triplet channels, and disorder , 2019, Physical Review B.

[9]  Yue Sun,et al.  Review of annealing effects and superconductivity in Fe1+yTe1−xSex superconductors , 2019, Superconductor Science and Technology.

[10]  Zengwei Zhu,et al.  Superconductivity with peculiar upper critical fields in quasi-one-dimensional Cr-based pnictides , 2018, Chinese Physics B.

[11]  K. Nielsch,et al.  Universal scaling behavior of the upper critical field in strained FeSe0.7Te0.3 thin films , 2018, New Journal of Physics.

[12]  M. V. Sadovskii,et al.  Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction , 2017, Journal of Experimental and Theoretical Physics.

[13]  Jian-lin Luo,et al.  Effect of hydrostatic pressure on the superconducting properties of quasi-1D superconductor K2Cr3As3 , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  M. V. Sadovskii,et al.  Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction , 2017, 1709.03895.

[15]  W. Zhou,et al.  Two-band and pauli-limiting effects on the upper critical field of 112-type iron pnictide superconductors , 2017, Scientific Reports.

[16]  M. Randeria,et al.  Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+ySexTe1−x: An angle-resolved photoemission study , 2017, Science Advances.

[17]  J. Wosnitza,et al.  The upper critical field and its anisotropy in (Li1−xFex)OHFe1−ySe , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  S. Pyon,et al.  Influence of interstitial Fe to the phase diagram of Fe1+yTe1−xSex single crystals , 2016, Scientific Reports.

[19]  Wei Zhou,et al.  Anisotropic Ginzburg–Landau scaling of Hc2 and transport properties of 112-type Ca0.8La0.2Fe0.98Co0.02As2 single crystal , 2016, 1603.05392.

[20]  Ju-Hyun Park,et al.  Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit. , 2016, Physical review letters.

[21]  M. Salamon,et al.  Upper Critical Field and Kondo Effects in Fe(Te0.9Se0.1) Thin Films by Pulsed Field Measurements , 2016, Scientific Reports.

[22]  Yi Du,et al.  Pauli-limited effect in the magnetic phase diagram of FeSexTe1−x thin films , 2015 .

[23]  K. V. Grigorishin Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors , 2015, 1508.06398.

[24]  W. Kwok,et al.  Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}. , 2015, Physical review letters.

[25]  F. Balakirev,et al.  Anisotropy Reversal of the Upper Critical Field at Low Temperatures and Spin-Locked Superconductivity in K2Cr3As3 , 2015, 1505.05547.

[26]  T. Taen,et al.  Multiband effects and possible Dirac fermions in Fe1+yTe0.6Se0.4 , 2014, 1404.6158.

[27]  T. Taen,et al.  Dynamics and mechanism of oxygen annealing in Fe1+yTe0.6Se0.4 single crystal , 2014, Scientific Reports.

[28]  Shi Zhixiang,et al.  Bulk Superconductivity in Fe1+yTe1-xSex Induced by Annealing in Se and S Vapor , 2013 .

[29]  T. Taen,et al.  Bulk Superconductivity in Fe1+yTe1-xSex Induced by Annealing in Se and S Vapor , 2013, 1310.1983.

[30]  H. Takagi,et al.  Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity , 2013, Scientific Reports.

[31]  T. Taen,et al.  Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4 , 2012, 1211.3491.

[32]  Kefeng Wang,et al.  Iron chalcogenide superconductors at high magnetic fields , 2012, Science and technology of advanced materials.

[33]  J. Mercure,et al.  Upper critical magnetic field far above the paramagnetic pair-breaking limit of superconducting one-dimensional Li0:9Mo6O17 single crystals. , 2012, Physical review letters.

[34]  A. Gurevich Iron-based superconductors at high magnetic fields , 2011 .

[35]  F. Balakirev,et al.  Significant enhancement of upper critical fields by doping and strain in iron-based superconductors , 2011, 1108.5194.

[36]  D. Podolsky,et al.  Shallow pockets and very strong coupling superconductivity in FeSexTe1−x , 2011, Nature Physics.

[37]  F. Balakirev,et al.  Upper critical field and its anisotropy in LiFeAs , 2011, 1101.3159.

[38]  J. Wosnitza,et al.  Electron transport and anisotropy of the upper critical magnetic field in Ba0.68K0.32Fe2As2 single crystals , 2010, 1011.0698.

[39]  P. Toulemonde,et al.  Thermodynamic phase diagram of Fe(Se 0.5 Te 0.5 ) single crystals in fields up to 28 tesla , 2010, 1010.0493.

[40]  G. Gu,et al.  Optical properties of the iron-chalcogenide superconductor FeTe0.55Se0.45 , 2010, 1007.1447.

[41]  Y. Koike,et al.  Growth, Annealing Effects on Superconducting and Magnetic Properties, and Anisotropy of FeSe1-xTex (0.5≤x≤1) Single Crystals , 2010 .

[42]  D. Braithwaite,et al.  Evidence for Anisotropic Vortex Dynamics and Pauli Limitation in the Upper Critical Field of FeSe1-xTex , 2010, 1003.3812.

[43]  H. Takagi,et al.  Evidence for dominant Pauli paramagnetic effect in the upper critical field of single-crystalline FeTe 0.6 Se 0.4 , 2010, 1001.4017.

[44]  E. Pomjakushina,et al.  Evolution of two-gap behavior of the superconductor FeSe1-x. , 2009, Physical review letters.

[45]  이후종 Effects of two gaps and paramagnetic pair breaking on the upper critical field of SmFeAsO0.85 and SmFeAsO0.8F0.2 single crystals , 2009 .

[46]  J. H. Yang,et al.  Weak anisotropy of the superconducting upper critical field in Fe 1.11 Te 0.6 Se 0.4 single crystals , 2009, 0909.5328.

[47]  D. Graf,et al.  Anisotropy of the upper critical field in a Co-doped BaFe2As2 single crystal , 2009, 0904.1418.

[48]  A. Amato,et al.  Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors , 2009, 0902.3498.

[49]  H. Hosono,et al.  Pseudoisotropic upper critical field in cobalt-doped SrFe2As2 epitaxial films. , 2008, Physical review letters.

[50]  L. Balicas,et al.  Upper critical fields and thermally-activated transport of NdFeAsO 0.7 F 0.3 single crystal , 2008, 0810.2469.

[51]  D. Christen,et al.  Two‐Band Superconductivity in LaFeAsO0.89F0.11 at Very High Magnetic Fields. , 2008 .

[52]  F. Balakirev,et al.  Nearly isotropic superconductivity in (Ba,K)Fe2As2 , 2008, Nature.

[53]  I. Askerzade Ginzburg–Landau theory: the case of two-band superconductors , 2006 .

[54]  C. Proust,et al.  Reaching the Pauli limit in the cuprateBi2Sr2CuO6+δin high parallel magnetic fields , 2006 .

[55]  A. Gurevich,et al.  Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors , 2002, cond-mat/0212129.

[56]  J. Kortus,et al.  Specific heat of MgB2 in a one- and a two-band model from first-principles calculations , 2001, cond-mat/0111262.

[57]  Larkin,et al.  From isotropic to anisotropic superconductors: A scaling approach. , 1992, Physical review letters.

[58]  Y. Nagaoka,et al.  Theory of Kondo Effect in Superconductors. I : Transition Temperature and Upper Critical Field , 1977 .

[59]  K. Maki Effect of Pauli Paramagnetism on Magnetic Properties of High-Field Superconductors , 1966 .

[60]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . II , 1966 .

[61]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[62]  Lev P. Gor'kov,et al.  CONTRIBUTION TO THE THEORY OF SUPERCONDUCTING ALLOYS WITH PARAMAGNETIC IMPURITIES , 1960 .

[63]  Stoner EdmundC.,et al.  XCVII. The demagnetizing factors for ellipsoids , 1945 .

[64]  H. Alloul Introduction to Superconductivity , 2011 .

[65]  A Gencer,et al.  On the Ginzburg-Landau analysis of the upper critical field Hc2 in MgB2 , 2002 .