A Randomized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi Diagrams
暂无分享,去创建一个
[1] D. T. Lee,et al. Higher Order City Voronoi Diagrams , 2012, SWAT.
[2] D. T. Lee,et al. Higher-Order Geodesic Voronoi Diagrams in a Polygonal Domain with Holes , 2013, SODA.
[3] Kurt Mehlhorn,et al. Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..
[4] Sariel Har-Peled,et al. Taking a walk in a planar arrangement , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[5] D. T. Lee,et al. An Output-Sensitive Approach for the L 1/L ∞ k-Nearest-Neighbor Voronoi Diagram , 2011, ESA.
[6] Edgar A. Ramos,et al. On range reporting, ray shooting and k-level construction , 1999, SCG '99.
[7] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[8] Evanthia Papadopoulou,et al. On Higher Order Voronoi Diagrams of Line Segments , 2012, ISAAC.
[9] Franz Aurenhammer,et al. A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1992, Int. J. Comput. Geom. Appl..
[10] Jean-Daniel Boissonnat,et al. A semidynamic construction of higher-order voronoi diagrams and its randomized analysis , 1993, Algorithmica.
[11] D. T. Lee,et al. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[12] Evanthia Papadopoulou,et al. A Sweepline Algorithm for Higher Order Voronoi Diagrams , 2013, 2013 10th International Symposium on Voronoi Diagrams in Science and Engineering.
[13] Kurt Mehlhorn,et al. On the construction of abstract voronoi diagrams , 1990, STACS.
[14] Rolf Klein,et al. Abstract Voronoi diagrams revisited , 2009, Comput. Geom..
[15] Kenneth L. Clarkson,et al. New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..
[16] Cecilia Bohler,et al. On the Complexity of Higher Order Abstract Voronoi Diagrams , 2013, ICALP.
[17] Timothy M. Chan. Random Sampling, Halfspace Range Reporting, and Construction of (<= k)-Levels in Three Dimensions , 2000, SIAM J. Comput..
[18] Bernard Chazelle,et al. An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.